mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
61 lines
2.6 KiB
Python
61 lines
2.6 KiB
Python
import unittest
|
|
|
|
from fastdeploy.engine.kv_cache_interface import AttentionSpec, KVCacheSpec
|
|
|
|
|
|
class TestKVCacheSpec(unittest.TestCase):
|
|
|
|
def test_merge_valid(self):
|
|
# Create two valid KVCacheSpec objects with the same block_size and block_memory_used
|
|
spec1 = KVCacheSpec(block_size=256, block_memory_used=1024)
|
|
spec2 = KVCacheSpec(block_size=256, block_memory_used=1024)
|
|
|
|
merged_spec = KVCacheSpec.merge([spec1, spec2])
|
|
|
|
self.assertEqual(merged_spec.block_size, spec1.block_size)
|
|
self.assertEqual(merged_spec.block_memory_used, spec1.block_memory_used)
|
|
|
|
def test_merge_invalid(self):
|
|
spec1 = KVCacheSpec(block_size=256, block_memory_used=1024)
|
|
spec2 = KVCacheSpec(block_size=512, block_memory_used=1024)
|
|
|
|
with self.assertRaises(AssertionError):
|
|
KVCacheSpec.merge([spec1, spec2])
|
|
|
|
def test_attention_spec_inheritance(self):
|
|
# Create an AttentionSpec object
|
|
attention_spec = AttentionSpec(
|
|
block_size=256, block_memory_used=1024, num_kv_heads=12, head_size=64, dtype="float32"
|
|
)
|
|
|
|
self.assertEqual(attention_spec.block_size, 256)
|
|
self.assertEqual(attention_spec.block_memory_used, 1024)
|
|
self.assertEqual(attention_spec.num_kv_heads, 12)
|
|
self.assertEqual(attention_spec.head_size, 64)
|
|
self.assertEqual(attention_spec.dtype, "float32")
|
|
|
|
def test_attention_spec_merge(self):
|
|
# Create two AttentionSpec objects with the same attributes
|
|
spec1 = AttentionSpec(block_size=256, block_memory_used=1024, num_kv_heads=12, head_size=64, dtype="float32")
|
|
spec2 = AttentionSpec(block_size=256, block_memory_used=1024, num_kv_heads=12, head_size=64, dtype="float32")
|
|
|
|
merged_spec = AttentionSpec.merge([spec1, spec2])
|
|
|
|
self.assertEqual(merged_spec.block_size, spec1.block_size)
|
|
self.assertEqual(merged_spec.block_memory_used, spec1.block_memory_used)
|
|
self.assertEqual(merged_spec.num_kv_heads, spec1.num_kv_heads)
|
|
self.assertEqual(merged_spec.head_size, spec1.head_size)
|
|
self.assertEqual(merged_spec.dtype, spec1.dtype)
|
|
|
|
def test_attention_spec_merge_invalid(self):
|
|
# Create two AttentionSpec objects with different attributes
|
|
spec1 = AttentionSpec(block_size=256, block_memory_used=1024, num_kv_heads=12, head_size=64, dtype="float32")
|
|
spec2 = AttentionSpec(block_size=512, block_memory_used=1024, num_kv_heads=12, head_size=64, dtype="float32")
|
|
|
|
with self.assertRaises(AssertionError):
|
|
AttentionSpec.merge([spec1, spec2])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|