mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			525 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			525 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import asyncio
 | |
| import time
 | |
| import traceback
 | |
| import uuid
 | |
| from typing import List, Optional
 | |
| 
 | |
| import aiozmq
 | |
| import msgpack
 | |
| import numpy as np
 | |
| from aiozmq import zmq
 | |
| 
 | |
| from fastdeploy.entrypoints.openai.protocol import (
 | |
|     ChatCompletionRequest,
 | |
|     ChatCompletionResponse,
 | |
|     ChatCompletionResponseChoice,
 | |
|     ChatCompletionResponseStreamChoice,
 | |
|     ChatCompletionStreamResponse,
 | |
|     ChatMessage,
 | |
|     DeltaMessage,
 | |
|     ErrorResponse,
 | |
|     LogProbEntry,
 | |
|     LogProbs,
 | |
|     PromptTokenUsageInfo,
 | |
|     UsageInfo,
 | |
| )
 | |
| from fastdeploy.metrics.work_metrics import work_process_metrics
 | |
| from fastdeploy.utils import api_server_logger, get_host_ip
 | |
| from fastdeploy.worker.output import LogprobsLists
 | |
| 
 | |
| 
 | |
| class OpenAIServingChat:
 | |
|     """
 | |
|     OpenAI-style chat completions serving
 | |
|     """
 | |
| 
 | |
|     def __init__(self, engine_client, pid, ips):
 | |
|         self.engine_client = engine_client
 | |
|         self.pid = pid
 | |
|         self.master_ip = ips
 | |
|         self.host_ip = get_host_ip()
 | |
|         if self.master_ip is not None:
 | |
|             if isinstance(self.master_ip, list):
 | |
|                 self.master_ip = self.master_ip[0]
 | |
|             else:
 | |
|                 self.master_ip = self.master_ip.split(",")[0]
 | |
| 
 | |
|     def _check_master(self):
 | |
|         if self.master_ip is None:
 | |
|             return True
 | |
|         if self.host_ip == self.master_ip:
 | |
|             return True
 | |
|         return False
 | |
| 
 | |
|     async def create_chat_completion(self, request: ChatCompletionRequest):
 | |
|         """
 | |
|         Create a new chat completion using the specified parameters.
 | |
|         """
 | |
| 
 | |
|         if not self._check_master():
 | |
|             err_msg = f"Only master node can accept completion request, please send request to master node: {self.pod_ips[0]}"
 | |
|             api_server_logger.error(err_msg)
 | |
|             return ErrorResponse(message=err_msg, code=400)
 | |
| 
 | |
|         if request.user is not None:
 | |
|             request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
 | |
|         else:
 | |
|             request_id = f"chatcmpl-{uuid.uuid4()}"
 | |
|         api_server_logger.info(f"create chat completion request: {request_id}")
 | |
| 
 | |
|         try:
 | |
|             current_req_dict = request.to_dict_for_infer(request_id)
 | |
|             current_req_dict["arrival_time"] = time.time()
 | |
|             prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
 | |
|             if isinstance(prompt_token_ids, np.ndarray):
 | |
|                 prompt_token_ids = prompt_token_ids.tolist()
 | |
|         except Exception as e:
 | |
|             return ErrorResponse(code=400, message=str(e))
 | |
| 
 | |
|         del current_req_dict
 | |
| 
 | |
|         if request.stream:
 | |
|             return self.chat_completion_stream_generator(request, request_id, request.model, prompt_token_ids)
 | |
|         else:
 | |
|             try:
 | |
|                 return await self.chat_completion_full_generator(request, request_id, request.model, prompt_token_ids)
 | |
|             except Exception as e:
 | |
|                 return ErrorResponse(code=400, message=str(e))
 | |
| 
 | |
|     def _create_streaming_error_response(self, message: str) -> str:
 | |
|         error_response = ErrorResponse(
 | |
|             code=400,
 | |
|             message=message,
 | |
|         )
 | |
|         return error_response.model_dump_json()
 | |
| 
 | |
|     async def chat_completion_stream_generator(
 | |
|         self,
 | |
|         request: ChatCompletionRequest,
 | |
|         request_id: str,
 | |
|         model_name: str,
 | |
|         prompt_token_ids: list(),
 | |
|     ):
 | |
|         """
 | |
|         Streaming chat completion generator.
 | |
|         """
 | |
|         created_time = int(time.time())
 | |
|         chunk_object_type: str = "chat.completion.chunk"
 | |
|         first_iteration = True
 | |
|         previous_num_tokens = 0
 | |
|         num_prompt_tokens = 0
 | |
|         num_choices = 1
 | |
|         max_streaming_response_tokens = (
 | |
|             request.max_streaming_response_tokens
 | |
|             if request.max_streaming_response_tokens is not None
 | |
|             else (request.metadata or {}).get("max_streaming_response_tokens", 1)
 | |
|         )  # dierctly passed & passed in metadata
 | |
| 
 | |
|         enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
 | |
|         if enable_thinking is None:
 | |
|             enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
 | |
| 
 | |
|         include_stop_str_in_output = request.include_stop_str_in_output
 | |
| 
 | |
|         stream_options = request.stream_options
 | |
|         if stream_options is None:
 | |
|             include_usage = False
 | |
|             include_continuous_usage = False
 | |
|         else:
 | |
|             include_usage = stream_options.include_usage
 | |
|             include_continuous_usage = stream_options.continuous_usage_stats
 | |
|         chunk = ChatCompletionStreamResponse(
 | |
|             id=request_id,
 | |
|             object=chunk_object_type,
 | |
|             created=created_time,
 | |
|             choices=[],
 | |
|             model=model_name,
 | |
|         )
 | |
|         try:
 | |
|             dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
 | |
|             dealer.write([b"", request_id.encode("utf-8")])
 | |
|             choices = []
 | |
|             current_waiting_time = 0
 | |
|             while num_choices > 0:
 | |
|                 try:
 | |
|                     raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             if choices:
 | |
|                                 chunk.choices = choices
 | |
|                                 yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.01)
 | |
|                     continue
 | |
|                 response = msgpack.unpackb(raw_data[-1])
 | |
|                 for res in response:
 | |
|                     if res.get("error_code", 200) != 200:
 | |
|                         raise ValueError("{}".format(res["error_msg"]))
 | |
|                     if res["finished"]:
 | |
|                         api_server_logger.info(f"chat completion finished: {request_id}")
 | |
| 
 | |
|                     self.engine_client.data_processor.process_response_dict(
 | |
|                         res,
 | |
|                         stream=True,
 | |
|                         enable_thinking=enable_thinking,
 | |
|                         include_stop_str_in_output=include_stop_str_in_output,
 | |
|                     )
 | |
| 
 | |
|                     if res["metrics"]["first_token_time"] is not None:
 | |
|                         arrival_time = res["metrics"]["first_token_time"]
 | |
|                         inference_start_time = res["metrics"]["inference_start_time"]
 | |
|                     else:
 | |
|                         arrival_time = res["metrics"]["arrival_time"] - inference_start_time
 | |
|                     if first_iteration:
 | |
|                         num_prompt_tokens = len(prompt_token_ids)
 | |
|                         num_cached_tokens = res.get("num_cached_tokens", 0)
 | |
|                         for i in range(num_choices):
 | |
|                             choice = ChatCompletionResponseStreamChoice(
 | |
|                                 index=i,
 | |
|                                 delta=DeltaMessage(
 | |
|                                     role="assistant",
 | |
|                                     content="",
 | |
|                                     reasoning_content="",
 | |
|                                     tool_calls=None,
 | |
|                                     prompt_token_ids=None,
 | |
|                                     completion_token_ids=None,
 | |
|                                 ),
 | |
|                             )
 | |
|                             if request.return_token_ids:
 | |
|                                 choice.delta.prompt_token_ids = list(prompt_token_ids)
 | |
|                             chunk = ChatCompletionStreamResponse(
 | |
|                                 id=request_id,
 | |
|                                 object=chunk_object_type,
 | |
|                                 created=created_time,
 | |
|                                 choices=[choice],
 | |
|                                 model=model_name,
 | |
|                             )
 | |
|                             if include_continuous_usage:
 | |
|                                 chunk.usage = UsageInfo(
 | |
|                                     prompt_tokens=num_prompt_tokens,
 | |
|                                     completion_tokens=0,
 | |
|                                     total_tokens=num_prompt_tokens,
 | |
|                                     prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens),
 | |
|                                 )
 | |
|                             yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
 | |
|                         first_iteration = False
 | |
| 
 | |
|                     output = res["outputs"]
 | |
|                     delta_text = output["text"]
 | |
|                     output_top_logprobs = output["top_logprobs"]
 | |
|                     logprobs_res: Optional[LogProbs] = None
 | |
|                     if request.logprobs and output_top_logprobs is not None:
 | |
|                         logprobs_res = self._create_chat_logprobs(
 | |
|                             output_top_logprobs, request.logprobs, request.top_logprobs
 | |
|                         )
 | |
| 
 | |
|                     previous_num_tokens += len(output["token_ids"])
 | |
|                     delta_message = DeltaMessage(
 | |
|                         content=delta_text,
 | |
|                         reasoning_content=output.get("reasoning_content"),
 | |
|                         prompt_token_ids=None,
 | |
|                         completion_token_ids=None,
 | |
|                         tool_calls=output.get("tool_call_content", []),
 | |
|                     )
 | |
| 
 | |
|                     choice = ChatCompletionResponseStreamChoice(
 | |
|                         index=0,
 | |
|                         delta=delta_message,
 | |
|                         logprobs=logprobs_res,
 | |
|                         arrival_time=arrival_time,
 | |
|                     )
 | |
|                     if res["finished"]:
 | |
|                         num_choices -= 1
 | |
|                         work_process_metrics.e2e_request_latency.observe(
 | |
|                             time.time() - res["metrics"]["request_start_time"]
 | |
|                         )
 | |
|                         has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
 | |
|                         max_tokens = request.max_completion_tokens or request.max_tokens
 | |
|                         if has_no_token_limit or previous_num_tokens != max_tokens:
 | |
|                             choice.finish_reason = "stop"
 | |
|                             if (
 | |
|                                 self.engine_client.reasoning_parser == "ernie_x1"
 | |
|                                 and output.get("finish_reason", "") == "tool_calls"
 | |
|                             ):
 | |
|                                 choice.finish_reason = "tool_calls"
 | |
|                         else:
 | |
|                             choice.finish_reason = "length"
 | |
| 
 | |
|                         if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
 | |
|                             choice.finish_reason = "recover_stop"
 | |
| 
 | |
|                     if request.return_token_ids:
 | |
|                         choice.delta.completion_token_ids = list(output["token_ids"])
 | |
|                     if include_continuous_usage:
 | |
|                         chunk.usage = UsageInfo(
 | |
|                             prompt_tokens=num_prompt_tokens,
 | |
|                             completion_tokens=previous_num_tokens,
 | |
|                             total_tokens=num_prompt_tokens + previous_num_tokens,
 | |
|                         )
 | |
|                     choices.append(choice)
 | |
| 
 | |
|                     if len(choices) == max_streaming_response_tokens or res["finished"]:
 | |
|                         chunk.choices = choices
 | |
|                         yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                         choices = []
 | |
| 
 | |
|                 if choices:
 | |
|                     chunk.choices = choices
 | |
|                     yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                     choices = []
 | |
| 
 | |
|             if include_usage:
 | |
|                 completion_tokens = previous_num_tokens
 | |
|                 usage = UsageInfo(
 | |
|                     prompt_tokens=num_prompt_tokens,
 | |
|                     completion_tokens=completion_tokens,
 | |
|                     total_tokens=num_prompt_tokens + completion_tokens,
 | |
|                 )
 | |
|                 chunk = ChatCompletionStreamResponse(
 | |
|                     id=request_id,
 | |
|                     object=chunk_object_type,
 | |
|                     created=created_time,
 | |
|                     choices=[],
 | |
|                     model=model_name,
 | |
|                     usage=usage,
 | |
|                 )
 | |
|                 yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
| 
 | |
|         except Exception as e:
 | |
|             error_data = self._create_streaming_error_response(str(e))
 | |
|             yield f"data: {error_data}\n\n"
 | |
|         finally:
 | |
|             dealer.close()
 | |
|             yield "data: [DONE]\n\n"
 | |
| 
 | |
|     async def chat_completion_full_generator(
 | |
|         self,
 | |
|         request: ChatCompletionRequest,
 | |
|         request_id: str,
 | |
|         model_name: str,
 | |
|         prompt_token_ids: list(),
 | |
|     ):
 | |
|         """
 | |
|         Full chat completion generator.
 | |
|         """
 | |
|         created_time = int(time.time())
 | |
|         final_res = None
 | |
|         enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
 | |
|         if enable_thinking is None:
 | |
|             enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
 | |
| 
 | |
|         include_stop_str_in_output = request.include_stop_str_in_output
 | |
| 
 | |
|         try:
 | |
|             dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
 | |
|             dealer.write([b"", request_id.encode("utf-8")])
 | |
|             final_res = None
 | |
|             previous_num_tokens = 0
 | |
|             current_waiting_time = 0
 | |
|             logprob_contents = []
 | |
|             completion_token_ids = []
 | |
|             while True:
 | |
|                 try:
 | |
|                     raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
| 
 | |
|                 response = msgpack.unpackb(raw_data[-1])
 | |
|                 task_is_finished = False
 | |
|                 for data in response:
 | |
|                     if data.get("error_code", 200) != 200:
 | |
|                         raise ValueError("{}".format(data["error_msg"]))
 | |
|                     data = self.engine_client.data_processor.process_response_dict(
 | |
|                         data,
 | |
|                         stream=False,
 | |
|                         enable_thinking=enable_thinking,
 | |
|                         include_stop_str_in_output=include_stop_str_in_output,
 | |
|                     )
 | |
|                     # api_server_logger.debug(f"Client {request_id} received: {data}")
 | |
|                     previous_num_tokens += len(data["outputs"]["token_ids"])
 | |
|                     completion_token_ids.extend(data["outputs"]["token_ids"])
 | |
|                     # The logprob for handling the response
 | |
|                     output = data["outputs"]
 | |
|                     output_top_logprobs = output["top_logprobs"]
 | |
|                     if output_top_logprobs is not None:
 | |
|                         logprobs_res = self._create_chat_logprobs(
 | |
|                             output_top_logprobs, request.logprobs, request.top_logprobs
 | |
|                         )
 | |
|                         if logprobs_res and logprobs_res.content is not None:
 | |
|                             logprob_contents.extend(logprobs_res.content)
 | |
|                     if data["finished"]:
 | |
|                         final_res = data
 | |
|                         task_is_finished = True
 | |
|                         break
 | |
|                 if task_is_finished:
 | |
|                     break
 | |
|         finally:
 | |
|             dealer.close()
 | |
| 
 | |
|         choices = []
 | |
|         output = final_res["outputs"]
 | |
|         message = ChatMessage(
 | |
|             role="assistant",
 | |
|             content=output["text"],
 | |
|             reasoning_content=output.get("reasoning_content"),
 | |
|             tool_calls=output.get("tool_call_content"),
 | |
|             prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
 | |
|             completion_token_ids=completion_token_ids if request.return_token_ids else None,
 | |
|         )
 | |
|         logprobs_full_res = None
 | |
|         if logprob_contents:
 | |
|             logprobs_full_res = LogProbs(content=logprob_contents)
 | |
| 
 | |
|         choice = ChatCompletionResponseChoice(
 | |
|             index=0,
 | |
|             message=message,
 | |
|             logprobs=logprobs_full_res,
 | |
|             finish_reason=None,
 | |
|         )
 | |
|         has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
 | |
|         max_tokens = request.max_completion_tokens or request.max_tokens
 | |
|         if has_no_token_limit or previous_num_tokens != max_tokens:
 | |
|             choice.finish_reason = "stop"
 | |
|             if self.engine_client.reasoning_parser == "ernie_x1" and output.get("finish_reason", "") == "tool_calls":
 | |
|                 choice.finish_reason = "tool_calls"
 | |
|         else:
 | |
|             choice.finish_reason = "length"
 | |
| 
 | |
|         if final_res.get("error_msg") is not None and "Recover" in final_res["error_msg"]:
 | |
|             choice.finish_reason = "recover_stop"
 | |
|         choices.append(choice)
 | |
| 
 | |
|         num_prompt_tokens = len(prompt_token_ids)
 | |
|         num_generated_tokens = previous_num_tokens
 | |
|         usage = UsageInfo(
 | |
|             prompt_tokens=num_prompt_tokens,
 | |
|             completion_tokens=num_generated_tokens,
 | |
|             total_tokens=num_prompt_tokens + num_generated_tokens,
 | |
|             prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=final_res.get("num_cached_tokens", 0)),
 | |
|         )
 | |
|         work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
 | |
|         return ChatCompletionResponse(
 | |
|             id=request_id,
 | |
|             created=created_time,
 | |
|             model=model_name,
 | |
|             choices=choices,
 | |
|             usage=usage,
 | |
|         )
 | |
| 
 | |
|     def _create_chat_logprobs(
 | |
|         self,
 | |
|         output_top_logprobs,
 | |
|         request_logprobs: Optional[bool] = None,
 | |
|         request_top_logprobs: Optional[int] = None,
 | |
|     ) -> Optional[LogProbs]:
 | |
|         """Create OpenAI-style logprobs for chat completions."""
 | |
|         if output_top_logprobs is None or len(output_top_logprobs) < 3 or any(not lst for lst in output_top_logprobs):
 | |
|             return None
 | |
|         logprobs_res: Optional[LogProbs] = None
 | |
|         for logprob_token_ids, logprobs, sampled_token_ranks in zip(
 | |
|             output_top_logprobs[0], output_top_logprobs[1], output_top_logprobs[2]
 | |
|         ):
 | |
|             top_logprobs = LogprobsLists(
 | |
|                 logprob_token_ids=[logprob_token_ids],
 | |
|                 logprobs=[logprobs],
 | |
|                 sampled_token_ranks=[sampled_token_ranks],
 | |
|             )
 | |
|             step_logprobs_res = self._build_logprobs_response(
 | |
|                 request_logprobs=request_logprobs,
 | |
|                 response_logprobs=top_logprobs,
 | |
|                 request_top_logprobs=request_top_logprobs,
 | |
|             )
 | |
|             if logprobs_res is None:
 | |
|                 logprobs_res = step_logprobs_res
 | |
|             else:
 | |
|                 logprobs_res.content.extend(step_logprobs_res.content)
 | |
|         return logprobs_res
 | |
| 
 | |
|     def _build_logprobs_response(
 | |
|         self,
 | |
|         request_logprobs: bool,
 | |
|         response_logprobs: Optional[LogprobsLists],
 | |
|         request_top_logprobs: int,
 | |
|     ) -> Optional[LogProbs]:
 | |
|         """
 | |
|         Construct a logprobs response object in line with the OpenAI style.
 | |
|         Retain the complete top-k candidates and avoid circular references.
 | |
|         """
 | |
| 
 | |
|         # Parameter validation
 | |
|         if (
 | |
|             response_logprobs is None
 | |
|             or not request_logprobs
 | |
|             or request_top_logprobs is None
 | |
|             or request_top_logprobs < 0
 | |
|         ):
 | |
|             return None
 | |
| 
 | |
|         try:
 | |
|             # The top-k candidates for the current token
 | |
|             topk_token_ids = []
 | |
|             topk_logprobs = []
 | |
| 
 | |
|             if response_logprobs.logprob_token_ids and len(response_logprobs.logprob_token_ids) > 0:
 | |
|                 topk_token_ids = response_logprobs.logprob_token_ids[0][: request_top_logprobs + 1]
 | |
| 
 | |
|             if response_logprobs.logprobs and len(response_logprobs.logprobs) > 0:
 | |
|                 topk_logprobs = response_logprobs.logprobs[0][: request_top_logprobs + 1]
 | |
| 
 | |
|             # Construct the candidate token structure (LogProbEntry) of topk
 | |
|             top_logprob_entries: List[LogProbEntry] = []
 | |
|             for tid, lp in zip(topk_token_ids, topk_logprobs):
 | |
|                 token_str = self.engine_client.data_processor.process_logprob_response(
 | |
|                     [tid], clean_up_tokenization_spaces=False
 | |
|                 )
 | |
|                 token_bytes = token_str.encode("utf-8", errors="replace")
 | |
|                 if "\ufffd" in token_str:
 | |
|                     token_str = "bytes:" + "".join(f"\\x{byte:02x}" for byte in token_bytes)
 | |
|                 entry = LogProbEntry(token=token_str, logprob=lp, bytes=list(token_bytes))
 | |
|                 top_logprob_entries.append(entry)
 | |
|             # Construct the sampled token object (avoid sharing references with top_logprob_entries)
 | |
|             sampled_entry = LogProbEntry(
 | |
|                 token=top_logprob_entries[0].token,
 | |
|                 logprob=top_logprob_entries[0].logprob,
 | |
|                 bytes=top_logprob_entries[0].bytes,
 | |
|                 top_logprobs=top_logprob_entries[1:],  # Here are the complete topk candidates
 | |
|             )
 | |
| 
 | |
|             return LogProbs(content=[sampled_entry])
 | |
| 
 | |
|         except Exception as e:
 | |
|             api_server_logger.error("Error in _build_logprobs_response: %s", e)
 | |
|             api_server_logger.error(traceback.format_exc())
 | |
|             return None
 | 
