mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			57 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--model", default=None, help="Path of yolov5seg model.")
 | |
|     parser.add_argument(
 | |
|         "--image", default=None, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default='cpu',
 | |
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--use_trt",
 | |
|         type=ast.literal_eval,
 | |
|         default=False,
 | |
|         help="Wether to use tensorrt.")
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
|     option = fd.RuntimeOption()
 | |
|     if args.device.lower() == "gpu":
 | |
|         option.use_gpu()
 | |
| 
 | |
|     if args.use_trt:
 | |
|         option.use_trt_backend()
 | |
|         option.set_trt_input_shape("images", [1, 3, 640, 640])
 | |
|     return option
 | |
| 
 | |
| 
 | |
| args = parse_arguments()
 | |
| 
 | |
| # Configure runtime, load model
 | |
| runtime_option = build_option(args)
 | |
| model = fd.vision.detection.YOLOv5Seg(
 | |
|     args.model, runtime_option=runtime_option)
 | |
| 
 | |
| # Predicting image
 | |
| if args.image is None:
 | |
|     image = fd.utils.get_detection_test_image()
 | |
| else:
 | |
|     image = args.image
 | |
| im = cv2.imread(image)
 | |
| result = model.predict(im)
 | |
| 
 | |
| # Visualization
 | |
| vis_im = fd.vision.vis_detection(im, result)
 | |
| cv2.imwrite("visualized_result.jpg", vis_im)
 | |
| print("Visualized result save in ./visualized_result.jpg")
 |