Files
FastDeploy/tests/model_loader/test_load_ernie_vl.py
YuanRisheng 85fbf5455a
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[V1 Loader]Ernie VL support loader v1 (#3494)
* ernie vl support new loader

* add unittest

* fix test
2025-08-22 11:16:57 +08:00

228 lines
6.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import signal
import socket
import subprocess
import sys
import time
import openai
import pytest
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "ernie-4_5-vl-28b-a3b-bf16-paddle")
else:
model_path = "./ernie-4_5-vl-28b-a3b-bf16-paddle"
log_path = "server.log"
limit_mm_str = json.dumps({"image": 100, "video": 100})
cmd = [
sys.executable,
"-m",
"fastdeploy.entrypoints.openai.api_server",
"--model",
model_path,
"--port",
str(FD_API_PORT),
"--tensor-parallel-size",
"2",
"--engine-worker-queue-port",
str(FD_ENGINE_QUEUE_PORT),
"--metrics-port",
str(FD_METRICS_PORT),
"--enable-mm",
"--max-model-len",
"32768",
"--max-num-batched-tokens",
"384",
"--max-num-seqs",
"128",
"--limit-mm-per-prompt",
limit_mm_str,
"--enable-chunked-prefill",
"--kv-cache-ratio",
"0.71",
"--reasoning-parser",
"ernie-45-vl",
"--load_choices",
"default_v1",
]
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True, # Enables killing full group via os.killpg
)
# Wait up to 10 minutes for API server to be ready
for _ in range(10 * 60):
if is_port_open("127.0.0.1", FD_API_PORT):
print(f"API server is up on port {FD_API_PORT}")
break
time.sleep(1)
else:
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print(f"Failed to kill process group: {e}")
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"API server (pid={process.pid}) terminated")
except Exception as e:
print(f"Failed to terminate API server: {e}")
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
@pytest.fixture(scope="session")
def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
@pytest.fixture
def headers():
"""
Returns common HTTP request headers.
"""
return {"Content-Type": "application/json"}
# ==========================
# OpenAI Client Chat Completion Test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url=f"http://{ip}:{service_http_port}/v1",
api_key="EMPTY_API_KEY",
)
return client
# Non-streaming test
def test_non_streaming_chat(openai_client):
"""Test non-streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{
"role": "system",
"content": "You are a helpful AI assistant.",
}, # system不是必需可选
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
"detail": "high",
},
},
{"type": "text", "text": "请描述图片内容"},
],
},
],
temperature=1,
max_tokens=53,
stream=False,
)
assert hasattr(response, "choices")
assert len(response.choices) > 0
assert hasattr(response.choices[0], "message")
assert hasattr(response.choices[0].message, "content")