mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 b4fef2cf29
			
		
	
	b4fef2cf29
	
	
	
		
			
			* [MetaxGPU] Support FastDeploy on metax gpu * Update metax_worker.py 1. change worker log; 2. remove custom allreduce, adapt it later; 3. remove cuda graph; * Update __init__.py 1. remove metax's key work comment * Update __init__.py 1. remove metax's key word comment; 2. add fused_moe_kernel_paddle import --------- Co-authored-by: yongqiangma <xing.wo@163.com>
		
			
				
	
	
		
			204 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			204 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import gc
 | |
| import os
 | |
| import time
 | |
| from typing import List, Optional
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| 
 | |
| from fastdeploy import envs
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.engine.request import Request
 | |
| from fastdeploy.utils import get_logger
 | |
| from fastdeploy.worker.metax_model_runner import MetaxModelRunner
 | |
| from fastdeploy.worker.output import ModelRunnerOutput
 | |
| from fastdeploy.worker.worker_base import WorkerBase
 | |
| 
 | |
| logger = get_logger("metax_worker", "metax_worker.log")
 | |
| 
 | |
| 
 | |
| class MetaxWorker(WorkerBase):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         local_rank: int,
 | |
|         rank: int,
 | |
|     ):
 | |
|         super().__init__(
 | |
|             fd_config=fd_config,
 | |
|             local_rank=local_rank,
 | |
|             rank=rank,
 | |
|         )
 | |
|         pass
 | |
| 
 | |
|     def init_device(self):
 | |
|         """
 | |
|         Initialize device and construct model runner
 | |
|         """
 | |
|         self.max_chips_per_node = 8
 | |
|         if paddle.is_compiled_with_custom_device("metax_gpu"):
 | |
|             # Set evironment variable
 | |
|             self.device_ids = self.parallel_config.device_ids.split(",")
 | |
|             self.device = f"metax_gpu:{self.local_rank % self.max_chips_per_node}"
 | |
|             paddle.device.set_device(self.device)
 | |
|             paddle.set_default_dtype(self.parallel_config.dtype)
 | |
| 
 | |
|             gc.collect()
 | |
|             paddle.device.cuda.empty_cache()
 | |
|         else:
 | |
|             raise RuntimeError(f"Not support device type: {self.device_config.device}")
 | |
| 
 | |
|         # Construct model runner
 | |
|         self.model_runner: MetaxModelRunner = MetaxModelRunner(
 | |
|             fd_config=self.fd_config,
 | |
|             device=self.device,
 | |
|             device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
 | |
|             rank=self.rank,
 | |
|             local_rank=self.local_rank,
 | |
|         )
 | |
| 
 | |
|     def exist_prefill(self):
 | |
|         """
 | |
|         check whether prefill stage exist
 | |
|         """
 | |
|         return self.model_runner.exist_prefill()
 | |
| 
 | |
|     def determine_available_memory(self) -> int:
 | |
|         """
 | |
|         Profiles the peak memory usage of the model to determine how much
 | |
|         memory can be used for KV cache without OOMs.
 | |
| 
 | |
|         The engine will first conduct a profiling of the existing memory usage.
 | |
|         Then, it calculate the maximum possible number of GPU and CPU blocks
 | |
|         that can be allocated with the remaining free memory.
 | |
| 
 | |
|         Tip:
 | |
|             You may limit the usage of GPU memory
 | |
|             by adjusting the `gpu_memory_utilization` parameter.
 | |
|         """
 | |
|         """Will implement later"""
 | |
| 
 | |
|         # 1. Record memory state before profile run
 | |
|         start_time = time.perf_counter()
 | |
|         Gb = 1024**3
 | |
| 
 | |
|         local_rank = self.local_rank % self.max_chips_per_node
 | |
|         paddle.device.cuda.reset_max_memory_reserved(local_rank)
 | |
|         paddle.device.cuda.reset_max_memory_allocated(local_rank)
 | |
|         # max memory for Allocator
 | |
|         paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(local_rank)
 | |
|         # max memory for Tensor
 | |
|         paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(local_rank)  # not reserved
 | |
| 
 | |
|         device_id = int(self.device_ids[local_rank])
 | |
|         if os.getenv("MACA_VISIBLE_DEVICES") is not None:
 | |
|             device_id = int(os.getenv("MACA_VISIBLE_DEVICES").split(",")[device_id])
 | |
| 
 | |
|         import pymxsml
 | |
| 
 | |
|         pymxsml.mxSmlInit()
 | |
|         info = pymxsml.mxSmlGetMemoryInfo(device_id)
 | |
|         before_run_meminfo_total = info.vramTotal * 1024
 | |
|         before_run_meminfo_used = info.vramUse * 1024
 | |
|         before_run_meminfo_free = before_run_meminfo_total - before_run_meminfo_used
 | |
| 
 | |
|         logger.info("Before running the profile, the memory usage info of Metax GPU is as follows:")
 | |
|         logger.info(f"Device Index: {device_id}")
 | |
|         logger.info(f"Device Total memory: {before_run_meminfo_total / Gb}")
 | |
|         logger.info(f"Device used memory: {before_run_meminfo_used / Gb}")
 | |
|         logger.info(f"Device free memory: {before_run_meminfo_free / Gb}")
 | |
|         logger.info(f"Paddle reserved memory: {paddle_reserved_mem_before_run / Gb}")
 | |
|         logger.info(f"Paddle allocated memory: {paddle_allocated_mem_before_run / Gb}")
 | |
| 
 | |
|         # 2. Profile run
 | |
|         self.model_runner.profile_run()
 | |
| 
 | |
|         # 3. Statistical memory information
 | |
|         paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(local_rank)
 | |
|         paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(local_rank)
 | |
| 
 | |
|         model_block_memory_used = self.cal_theortical_kvcache()
 | |
|         paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
 | |
| 
 | |
|         paddle.device.cuda.empty_cache()
 | |
| 
 | |
|         info = pymxsml.mxSmlGetMemoryInfo(device_id)
 | |
|         after_run_meminfo_total = info.vramTotal * 1024
 | |
|         after_run_meminfo_used = info.vramUse * 1024
 | |
|         after_run_meminfo_free = after_run_meminfo_total - after_run_meminfo_used
 | |
| 
 | |
|         available_kv_cache_memory = (
 | |
|             after_run_meminfo_total * self.cache_config.gpu_memory_utilization
 | |
|             - after_run_meminfo_used
 | |
|             - paddle_peak_increase
 | |
|         )
 | |
|         available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
 | |
| 
 | |
|         end_time = time.perf_counter()
 | |
| 
 | |
|         logger.info("After running the profile, the memory usage info of Metax GPU is as follows:")
 | |
|         logger.info(f"Device Index: {device_id}")
 | |
|         logger.info(f"Device Total memory: {after_run_meminfo_total / Gb}")
 | |
|         logger.info(f"Device used memory: {after_run_meminfo_used / Gb}")
 | |
|         logger.info(f"Device free memory: {after_run_meminfo_free / Gb}")
 | |
|         logger.info(f"Paddle reserved memory: {paddle_reserved_mem_after_run / Gb}")
 | |
|         logger.info(f"Paddle allocated memory: {paddle_allocated_mem_after_run / Gb}")
 | |
|         logger.info(f"Paddle available_kv_cache_memory: {available_kv_cache_memory / Gb}")
 | |
|         logger.info(f"Profile time: {end_time - start_time}")
 | |
| 
 | |
|         return available_kv_cache_memory
 | |
| 
 | |
|     def load_model(self) -> None:
 | |
|         """Load model"""
 | |
|         self.model_runner.load_model()
 | |
| 
 | |
|     def get_model(self) -> nn.Layer:
 | |
|         """Get current model"""
 | |
|         return self.model_runner.get_model()
 | |
| 
 | |
|     def initialize_cache(self, num_gpu_blocks: int) -> None:
 | |
|         """Initizlize the KV Cache with accurate num_gpu_blocks"""
 | |
|         # accurate cache size
 | |
|         self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks)
 | |
| 
 | |
|     def execute_model(
 | |
|         self,
 | |
|         model_forward_batch: Optional[List[Request]] = None,
 | |
|     ) -> Optional[ModelRunnerOutput]:
 | |
|         """ """
 | |
|         output = self.model_runner.execute_model(model_forward_batch)
 | |
|         return output
 | |
| 
 | |
|     def preprocess_new_task(self, req_dicts: List[Request]) -> None:
 | |
|         """Process new requests and then start the decode loop
 | |
|         and workers and modelrunners should not perceive it.
 | |
|         """
 | |
|         if envs.ENABLE_V1_KVCACHE_SCHEDULER:
 | |
|             self.model_runner.insert_tasks_v1(req_dicts=req_dicts)
 | |
|         else:
 | |
|             self.model_runner.insert_prefill_inputs(req_dicts=req_dicts)
 | |
| 
 | |
|     def check_health(self) -> bool:
 | |
|         """ """
 | |
|         return True
 | |
| 
 | |
|     def cal_theortical_kvcache(self) -> int:
 | |
|         """Calculate the block memory required"""
 | |
|         return self.model_runner.cal_theortical_kvcache()
 |