Files
FastDeploy/fastdeploy/worker/gpu_worker.py
chenjian 85a78d695d [Feature] Support block scheduler v1 for FD (#2928)
* Support FD block scheduler v1

* Support FD block scheduler v1

* Support FD block scheduler v1

* Fix according to copilot review

* Fix according to review

* Remove is_dummy

* Fix bug when real_bsz=1

* Fix infer first token cost time

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-07-23 20:31:31 +08:00

208 lines
7.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import gc
import time
from typing import List, Optional
import paddle
import pynvml
from paddle import nn
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.platforms import current_platform
from fastdeploy.utils import get_logger
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
from fastdeploy.worker.output import ModelRunnerOutput
from fastdeploy.worker.worker_base import WorkerBase
logger = get_logger("gpu_worker", "gpu_worker.log")
class GpuWorker(WorkerBase):
def __init__(
self,
fd_config: FDConfig,
local_rank: int,
rank: int,
):
super().__init__(
fd_config=fd_config,
local_rank=local_rank,
rank=rank,
)
pass
def init_device(self):
"""
Initialize device and construct model runner
"""
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda():
# Set evironment variable
self.device_ids = self.parallel_config.device_ids.split(",")
self.device = f"gpu:{self.local_rank % self.max_chips_per_node}"
paddle.device.set_device(self.device)
paddle.set_default_dtype(self.parallel_config.dtype)
gc.collect()
paddle.device.cuda.empty_cache()
if self.parallel_config.enable_custom_all_reduce:
from fastdeploy.distributed.communication import use_custom_allreduce
use_custom_allreduce()
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
# Construct model runner
self.model_runner: GPUModelRunner = GPUModelRunner(
fd_config=self.fd_config,
device=self.device,
device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
rank=self.rank,
local_rank=self.local_rank,
)
def prefill_finished(self):
"""
Check whether prefill stage finished
"""
return self.model_runner.prefill_finished()
def determine_available_memory(self) -> int:
"""
Profiles the peak memory usage of the model to determine how much
memory can be used for KV cache without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
Tip:
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# 1. Record memory state before profile run
start_time = time.perf_counter()
Gb = 1024**3
paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(self.local_rank) # not reserved
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(int(self.device_ids[self.local_rank]))
before_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
logger.info(
(
"Before running the profile, the memory usage info is as follows:",
f"\nDevice Total memory: {before_run_meminfo.total / Gb}",
f"\nDevice used memory: {before_run_meminfo.used / Gb}",
f"\nDevice free memory: {before_run_meminfo.free / Gb}",
f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}",
)
)
# 2. Profile run
self.model_runner.profile_run()
# 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(self.local_rank)
model_block_memory_used = self.cal_theortical_kvcache()
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
paddle.device.cuda.empty_cache()
after_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
pynvml.nvmlShutdown()
available_kv_cache_memory = (
after_run_meminfo.total * self.parallel_config.gpu_memory_utilization
- after_run_meminfo.used
- paddle_peak_increase
)
available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
end_time = time.perf_counter()
logger.info(
(
"After running the profile, the memory usage info is as follows:",
f"\nDevice Total memory: {after_run_meminfo.total / Gb}",
f"\nDevice used memory: {after_run_meminfo.used / Gb}",
f"\nDevice free memory: {after_run_meminfo.free / Gb}",
f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
f"Profile time: {end_time - start_time}",
)
)
return available_kv_cache_memory # return to caculate the block num in this device
def load_model(self) -> None:
"""Load model"""
self.model_runner.load_model()
def get_model(self) -> nn.Layer:
"""Get current model"""
return self.model_runner.get_model()
def initialize_cache(self, num_gpu_blocks: int) -> None:
"""Initizlize the KV Cache with accurate num_gpu_blocks"""
# accurate cache size
self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks)
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
) -> Optional[ModelRunnerOutput]:
""" """
output = self.model_runner.execute_model(model_forward_batch)
return output
def preprocess_new_task(self, req_dicts: List[Request]) -> None:
"""Process new requests and then start the decode loop
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
and workers and modelrunners should not perceive it.
"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.model_runner.insert_tasks_v1(req_dicts=req_dicts)
else:
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts)
def graph_optimize_and_warm_up_model(self) -> None:
"""
Perform the warm-up and the graph optimization
"""
if self.model_runner.graph_opt_level >= 1:
self.model_runner.sot_warmup()
# Triger cuda grpah capture
self.model_runner.capture_model()
def check_health(self) -> bool:
""" """
return True
def cal_theortical_kvcache(self) -> int:
"""Calculate the block memory required"""
return self.model_runner.cal_theortical_kvcache()