Files
FastDeploy/tests/operators/test_top_k_renorm_probs.py
Echo-Nie befe463f01 【Hackathon 9th No.37】add test_top_k_renorm_probs (#3755)
* add test_top_k_renorm_probs.py

* add size=2,3
2025-09-16 11:12:46 +08:00

80 lines
2.8 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import top_k_renorm_probs
class TestTopKRenormProbs(unittest.TestCase):
def setUp(self):
paddle.set_device("gpu")
np.random.seed(42)
def _check_output(self, probs, top_k):
probs_tensor = paddle.to_tensor(probs)
top_k_tensor = paddle.to_tensor(top_k)
renorm_probs = top_k_renorm_probs(probs_tensor, top_k_tensor).numpy()
self.assertEqual(renorm_probs.shape, probs.shape)
batch_size, vocab_size = probs.shape
for b in range(batch_size):
self.assertAlmostEqual(renorm_probs[b].sum(), 1.0, places=6)
top_indices = np.argsort(probs[b])[::-1][: top_k[b]]
for j in range(vocab_size):
if j not in top_indices:
self.assertAlmostEqual(renorm_probs[b, j], 0.0, places=6)
def test_single_batch_basic(self):
"""Test with batch_size = 1"""
probs = np.random.rand(1, 5).astype("float32")
probs /= probs.sum(axis=1, keepdims=True)
top_k = np.array([2], dtype="int64")
self._check_output(probs, top_k)
def test_single_batch_edge_cases(self):
"""Test edge cases with batch_size = 1"""
probs = np.array([[0.1, 0.3, 0.4, 0.2]], dtype="float32")
# top_k = 1
self._check_output(probs, np.array([1], dtype="int64"))
# top_k = vocab_size
renorm_probs = top_k_renorm_probs(
paddle.to_tensor(probs), paddle.to_tensor(np.array([4], dtype="int64"))
).numpy()
np.testing.assert_allclose(renorm_probs, probs, rtol=1e-6, atol=1e-6)
def test_batch_size_two(self):
"""Test with batch_size = 2"""
probs = np.random.rand(2, 5).astype("float32")
probs /= probs.sum(axis=1, keepdims=True)
top_k = np.array([2, 3], dtype="int64")
self._check_output(probs, top_k)
def test_batch_size_three(self):
"""Test with batch_size = 3"""
probs = np.random.rand(3, 6).astype("float32")
probs /= probs.sum(axis=1, keepdims=True)
top_k = np.array([1, 2, 4], dtype="int64")
self._check_output(probs, top_k)
if __name__ == "__main__":
unittest.main()