Files
FastDeploy/tests/operators/test_per_token_quant.py

172 lines
5.9 KiB
Python

import unittest
import numpy as np
import paddle
import paddle.nn.functional as F
from fastdeploy.model_executor.ops.gpu import per_token_quant, per_token_quant_padding
paddle.seed(2024)
def per_token_quant_paddle(input_tensor, block_size):
MAX_VALUE = 448.0
epsilon = 1e-10
input_shape = input_tensor.shape
token_num = input_shape[0]
hidden_size = input_shape[1]
# According to https://github.com/PaddlePaddle/FastDeploy/pull/3659
padding_size = (block_size - hidden_size % block_size) % block_size
padded_input = input_tensor
if padding_size > 0:
padded_input = F.pad(input_tensor, pad=[0, padding_size], mode="constant", value=0.0)
padded_hidden_size = hidden_size + padding_size
hidden_size_scale = padded_hidden_size // block_size
reshaped_input = paddle.reshape(padded_input, [token_num, hidden_size_scale, block_size]).astype("float32")
max_abs_val = paddle.max(paddle.abs(reshaped_input), axis=-1, keepdim=True)
max_abs_val = paddle.clip(max_abs_val, min=epsilon)
scale = max_abs_val / MAX_VALUE
quanted_value = reshaped_input / scale
quanted_x_padded_reshaped = quanted_value.to(paddle.float8_e4m3fn)
quanted_x_padded = paddle.reshape(quanted_x_padded_reshaped, [token_num, padded_hidden_size])
quanted_x = quanted_x_padded[:, :hidden_size]
quanted_scale = paddle.squeeze(scale, axis=-1)
return quanted_x, quanted_scale
def per_token_quant_padding_paddle(input_tensor, block_size, dtype):
quanted_x, intermediate_scale = per_token_quant_paddle(input_tensor, block_size)
token_num = input_tensor.shape[0]
tma_alignment_elements = 4
padded_token_num = ((token_num + tma_alignment_elements - 1) // tma_alignment_elements) * tma_alignment_elements
hidden_size_scale = intermediate_scale.shape[1]
padded_scale = paddle.zeros([padded_token_num, hidden_size_scale], dtype="float32")
padded_scale[:token_num, :] = intermediate_scale
return quanted_x, padded_scale
class TestPerTokenQuant(unittest.TestCase):
def get_input(self, shape, dtype):
return paddle.randn(shape=shape, dtype=dtype)
def setUp(self) -> None:
self.dtype = paddle.float16
self.token_num = 4
self.hidden_size = 500
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
def test_per_token_quant(self):
paddle_output, paddle_output_scale = per_token_quant_paddle(self.input_tensor, self.block_size)
output, output_scale = per_token_quant(self.input_tensor, self.block_size)
np.testing.assert_allclose(paddle_output_scale.numpy(), output_scale.numpy(), rtol=1e-6)
output_rel_diff = paddle.mean(
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)))
assert output_rel_diff < 0.001
class TestPerTokenQuantCase1(TestPerTokenQuant):
def setUp(self) -> None:
self.dtype = paddle.float16
self.token_num = 4
self.hidden_size = 128 * 6
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
class TestPerTokenQuantCase2(TestPerTokenQuant):
def setUp(self) -> None:
self.dtype = paddle.bfloat16
self.token_num = 4
self.hidden_size = 500
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
class TestPerTokenQuantCase3(TestPerTokenQuant):
def setUp(self) -> None:
self.dtype = paddle.bfloat16
self.token_num = 4
self.hidden_size = 128 * 6
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
class TestPerTokenQuantPadding(TestPerTokenQuant):
def setUp(self) -> None:
self.dtype = paddle.float16
self.token_num = 6
self.hidden_size = 128 * 4
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
def test_per_token_quant_padding(self):
paddle_output, paddle_output_scale = per_token_quant_padding_paddle(
self.input_tensor, self.block_size, self.dtype
)
output, output_scale = per_token_quant_padding(self.input_tensor, self.block_size)
self.assertEqual(paddle_output_scale.shape, output_scale.shape)
np.testing.assert_allclose(
paddle_output_scale[0 : self.token_num].numpy(),
output_scale[0 : self.token_num].numpy(),
rtol=1e-5,
atol=1e-5,
)
output_rel_diff = paddle.mean(
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)) + 1e-9)
assert output_rel_diff < 0.001
class TestPerTokenQuantPaddingCase1(TestPerTokenQuantPadding):
def setUp(self) -> None:
self.dtype = paddle.float16
self.token_num = 8
self.hidden_size = 128 * 4
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
class TestPerTokenQuantPaddingCase2(TestPerTokenQuantPadding):
def setUp(self) -> None:
self.dtype = paddle.bfloat16
self.token_num = 6
self.hidden_size = 128 * 4
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
class TestPerTokenQuantPaddingCase3(TestPerTokenQuantPadding):
def setUp(self) -> None:
self.dtype = paddle.bfloat16
self.token_num = 8
self.hidden_size = 128 * 4
self.block_size = 128
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
if __name__ == "__main__":
unittest.main()