mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-29 13:52:26 +08:00

* supplement unittest for custom_ops: ngram_match * add annotation * 借助 step_idx 信息,改为在具体位置判断是否相等 * del anno * del print --------- Co-authored-by: Tao Luo <luotao02@baidu.com>
117 lines
3.9 KiB
Python
117 lines
3.9 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import ngram_match
|
|
|
|
|
|
class TestNgramMatchOp(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
paddle.set_device("cpu")
|
|
|
|
def test_basic_match(self):
|
|
"""
|
|
Case 1: input_ids overlaps with pre_ids, and can extract draft tokens.
|
|
"""
|
|
batch_size = 1
|
|
seq_len = 6
|
|
|
|
# Input IDs
|
|
input_ids = paddle.to_tensor([[10, 20, 30, 40, 50, 60]], dtype="int64")
|
|
# Length of input IDs
|
|
input_ids_len = paddle.to_tensor([6], dtype="int64")
|
|
# Previous IDs
|
|
pre_ids = paddle.to_tensor([[10, 20, 30, 40, 0, 0]], dtype="int64")
|
|
# Current step index
|
|
step_idx = paddle.to_tensor([3], dtype="int64")
|
|
# Number of draft tokens
|
|
draft_token_num = paddle.to_tensor([3], dtype="int32")
|
|
# Placeholder for draft tokens
|
|
draft_tokens = paddle.zeros([batch_size, seq_len], dtype="int64")
|
|
|
|
# Sequence lengths for this time step
|
|
seq_lens_this_time = paddle.zeros([batch_size], dtype="int32")
|
|
# Sequence lengths for encoder
|
|
seq_lens_encoder = paddle.zeros([batch_size], dtype="int32")
|
|
# Sequence lengths for decoder
|
|
seq_lens_decoder = paddle.ones([batch_size], dtype="int32")
|
|
# Maximum decoding length
|
|
max_dec_len = paddle.to_tensor([10], dtype="int64")
|
|
|
|
ngram_match(
|
|
input_ids,
|
|
input_ids_len,
|
|
pre_ids,
|
|
step_idx,
|
|
draft_token_num,
|
|
draft_tokens,
|
|
seq_lens_this_time,
|
|
seq_lens_encoder,
|
|
seq_lens_decoder,
|
|
max_dec_len,
|
|
3,
|
|
4,
|
|
)
|
|
|
|
# Extract non-zero tokens and assert the results.
|
|
nonzero_tokens = draft_tokens.numpy()[0][draft_tokens.numpy()[0] != 0]
|
|
expected_tokens = [50, 60]
|
|
self.assertTrue((nonzero_tokens == expected_tokens).all())
|
|
|
|
# Check length
|
|
self.assertEqual(seq_lens_this_time.numpy()[0], 3)
|
|
|
|
def test_no_match(self):
|
|
"""
|
|
Case 2: pre_ids does not match input_ids, should only keep the current token.
|
|
"""
|
|
batch_size = 1
|
|
input_ids = paddle.to_tensor([[100, 200, 300, 400]], dtype="int64")
|
|
input_ids_len = paddle.to_tensor([4], dtype="int64")
|
|
pre_ids = paddle.to_tensor([[1, 2, 3, 4]], dtype="int64")
|
|
step_idx = paddle.to_tensor([3], dtype="int64")
|
|
draft_token_num = paddle.to_tensor([2], dtype="int32")
|
|
draft_tokens = paddle.zeros([batch_size, 4], dtype="int64")
|
|
|
|
seq_lens_this_time = paddle.zeros([batch_size], dtype="int32")
|
|
seq_lens_encoder = paddle.zeros([batch_size], dtype="int32")
|
|
seq_lens_decoder = paddle.ones([batch_size], dtype="int32")
|
|
max_dec_len = paddle.to_tensor([6], dtype="int64")
|
|
|
|
ngram_match(
|
|
input_ids,
|
|
input_ids_len,
|
|
pre_ids,
|
|
step_idx,
|
|
draft_token_num,
|
|
draft_tokens,
|
|
seq_lens_this_time,
|
|
seq_lens_encoder,
|
|
seq_lens_decoder,
|
|
max_dec_len,
|
|
3,
|
|
3,
|
|
)
|
|
|
|
# No match → should only keep 1 token
|
|
self.assertEqual(seq_lens_this_time.numpy()[0], 1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|