mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 21:32:29 +08:00
135 lines
5.6 KiB
Python
135 lines
5.6 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import fused_rotary_position_encoding
|
|
|
|
|
|
class TestFusedRotaryPositionEncoding(unittest.TestCase):
|
|
def setUp(self):
|
|
paddle.set_device("gpu")
|
|
np.random.seed(42)
|
|
|
|
def _make_cos_sin_cache(self, max_position: int, rot_dim: int) -> np.ndarray:
|
|
"""Generate cos/sin cache."""
|
|
assert rot_dim % 2 == 0, "rot_dim must be even"
|
|
half_dim = rot_dim // 2
|
|
inv_freq = 1.0 / (10000 ** (np.arange(0, half_dim).astype("float32") / half_dim))
|
|
positions = np.arange(max_position, dtype="float32")
|
|
freqs = np.outer(positions, inv_freq) # [max_position, half_dim]
|
|
cos_np = np.cos(freqs)
|
|
sin_np = np.sin(freqs)
|
|
return np.concatenate([cos_np, sin_np], axis=1).astype("float32")
|
|
|
|
def _ref_rotary(self, query, key, position_ids, cos_sin_cache, head_size, is_neox):
|
|
"""Numpy reference implementation."""
|
|
num_tokens, num_heads, _ = query.shape
|
|
num_kv_heads = key.shape[1]
|
|
rot_dim = cos_sin_cache.shape[1]
|
|
embed_dim = rot_dim // 2
|
|
|
|
query_ref = query.copy()
|
|
key_ref = key.copy()
|
|
|
|
for t in range(num_tokens):
|
|
pos = position_ids[t]
|
|
cos_ptr = cos_sin_cache[pos, :embed_dim]
|
|
sin_ptr = cos_sin_cache[pos, embed_dim:]
|
|
|
|
for h in range(num_heads):
|
|
arr = query_ref[t, h]
|
|
for i in range(embed_dim):
|
|
if is_neox:
|
|
x_idx, y_idx = i, embed_dim + i
|
|
cos, sin = cos_ptr[i], sin_ptr[i]
|
|
else:
|
|
x_idx, y_idx = 2 * i, 2 * i + 1
|
|
cos, sin = cos_ptr[i], sin_ptr[i]
|
|
x, y = arr[x_idx], arr[y_idx]
|
|
arr[x_idx] = x * cos - y * sin
|
|
arr[y_idx] = y * cos + x * sin
|
|
|
|
for h in range(num_kv_heads):
|
|
arr = key_ref[t, h]
|
|
for i in range(embed_dim):
|
|
if is_neox:
|
|
x_idx, y_idx = i, embed_dim + i
|
|
cos, sin = cos_ptr[i], sin_ptr[i]
|
|
else:
|
|
x_idx, y_idx = 2 * i, 2 * i + 1
|
|
cos, sin = cos_ptr[i], sin_ptr[i]
|
|
x, y = arr[x_idx], arr[y_idx]
|
|
arr[x_idx] = x * cos - y * sin
|
|
arr[y_idx] = y * cos + x * sin
|
|
|
|
return query_ref, key_ref
|
|
|
|
def _run_op(
|
|
self,
|
|
query_np: np.ndarray,
|
|
key_np: np.ndarray,
|
|
position_ids_np: np.ndarray,
|
|
cos_sin_cache_np: np.ndarray,
|
|
head_size: int,
|
|
is_neox: bool,
|
|
):
|
|
"""Run fused_rotary_position_encoding operator."""
|
|
query = paddle.to_tensor(query_np, dtype="float32")
|
|
key = paddle.to_tensor(key_np, dtype="float32")
|
|
position_ids = paddle.to_tensor(position_ids_np, dtype="int32")
|
|
cos_sin_cache = paddle.to_tensor(cos_sin_cache_np, dtype="float32")
|
|
|
|
fused_rotary_position_encoding(query, key, position_ids, cos_sin_cache, head_size, is_neox)
|
|
return query.numpy(), key.numpy()
|
|
|
|
def _check_correctness(self, num_tokens, num_heads, num_kv_heads, head_size, rot_dim, is_neox):
|
|
query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
|
|
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
|
|
position_ids_np = np.arange(num_tokens, dtype="int32")
|
|
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)
|
|
|
|
query_out, key_out = self._run_op(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox)
|
|
query_ref, key_ref = self._ref_rotary(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox)
|
|
|
|
np.testing.assert_allclose(query_out, query_ref, rtol=1e-5, atol=1e-6)
|
|
np.testing.assert_allclose(key_out, key_ref, rtol=1e-5, atol=1e-6)
|
|
|
|
def test_basic_case(self):
|
|
self._check_correctness(num_tokens=4, num_heads=2, num_kv_heads=2, head_size=6, rot_dim=4, is_neox=False)
|
|
|
|
def test_neox_mode(self):
|
|
self._check_correctness(num_tokens=3, num_heads=2, num_kv_heads=2, head_size=8, rot_dim=8, is_neox=True)
|
|
|
|
def test_large_num_tokens(self):
|
|
self._check_correctness(num_tokens=10, num_heads=2, num_kv_heads=2, head_size=4, rot_dim=4, is_neox=False)
|
|
|
|
def test_exceed_max_tokens(self):
|
|
num_tokens, num_heads, head_size = 65537, 1, 4
|
|
num_kv_heads, rot_dim = 1, 4
|
|
query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
|
|
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
|
|
position_ids_np = np.arange(num_tokens, dtype="int32")
|
|
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)
|
|
|
|
with self.assertRaises(Exception):
|
|
self._run_op(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox=False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|