Files
FastDeploy/tests/operators/test_eagle_get_self_hidden_states.py

111 lines
4.1 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import eagle_get_self_hidden_states
def computeOrderKernel(last_seq_lens_this_time, seq_lens_this_time, step_idx, src_map, output_token_num, bsz):
in_offset = 0
out_offset = 0
for i in range(bsz):
cur_seq_lens_this_time = seq_lens_this_time[i]
cur_last_seq_lens_this_time = last_seq_lens_this_time[i]
# 1. encoder
if step_idx[i] == 1 and cur_seq_lens_this_time > 0:
in_offset += 1
src_map[out_offset] = in_offset - 1
out_offset += 1
# 2. decoder
elif cur_seq_lens_this_time > 0: # =1
in_offset += cur_last_seq_lens_this_time
src_map[out_offset] = in_offset - 1
out_offset += 1
# 3. stop
else:
# first token end
if step_idx[i] == 1:
in_offset += 1 if cur_last_seq_lens_this_time > 0 else 0
# normal end
else:
in_offset += cur_last_seq_lens_this_time
output_token_num[0] = out_offset
def rebuildSelfHiddenStatesKernel(input, src_map, output, dim_embed, elem_cnt):
for elem_id in range(elem_cnt):
output_token_idx = int(elem_id / dim_embed)
input_token_idx = src_map[output_token_idx]
offset = elem_id % dim_embed
output[output_token_idx][offset] = input[input_token_idx][offset]
def eagle_get_self_hidden_states_ref(input, last_seq_lens_this_time, seq_lens_this_time, step_idx):
input_token_num = input.shape[0]
dim_embed = input.shape[1]
bsz = seq_lens_this_time.shape[0]
src_map = paddle.full([input_token_num], -1, seq_lens_this_time.dtype)
output_token_num = paddle.full([1], 0, seq_lens_this_time.dtype)
computeOrderKernel(last_seq_lens_this_time, seq_lens_this_time, step_idx, src_map, output_token_num, bsz)
output_token_num_cpu = output_token_num[0]
out = paddle.full([output_token_num_cpu, dim_embed], -1, input.dtype)
elem_cnt = output_token_num_cpu * dim_embed
rebuildSelfHiddenStatesKernel(input, src_map, out, dim_embed, elem_cnt)
return out
class TestEagleGetSelfHiddenStates(unittest.TestCase):
def test_eagle_get_self_hidden_states(self):
paddle.seed(2023)
np.random.seed(2023)
bs = 2
input_token_num = 10
dim_embed = 512
last_seq_lens_this_time = np.random.randint(0, input_token_num // bs, bs, dtype=np.int32)
seq_lens_this_time = np.random.randint(0, input_token_num // bs, bs, dtype=np.int32)
step_idx = np.arange(0, bs, dtype=np.int32)
last_seq_lens_this_time_tensor = paddle.to_tensor(last_seq_lens_this_time, dtype=paddle.int32)
seq_lens_this_time_tensor = paddle.to_tensor(seq_lens_this_time, dtype=paddle.int32)
step_idx_tensor = paddle.to_tensor(step_idx, dtype=paddle.int64)
input = np.random.randint(0, 10, (input_token_num, dim_embed), dtype=np.int32)
input_tensor = paddle.to_tensor(input, dtype=paddle.float16)
out = eagle_get_self_hidden_states(
input_tensor,
last_seq_lens_this_time_tensor,
seq_lens_this_time_tensor,
step_idx_tensor,
)
out_ref = eagle_get_self_hidden_states_ref(
input_tensor,
last_seq_lens_this_time_tensor,
seq_lens_this_time_tensor,
step_idx_tensor,
)
np.testing.assert_allclose(out.numpy(), out_ref.numpy())
if __name__ == "__main__":
unittest.main()