Files
FastDeploy/tests/operators/test_eagle_get_hidden_states.py

165 lines
6.1 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import eagle_get_hidden_states
def ComputeOrderKernel(
seq_lens_this_time,
seq_lens_encoder,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
accept_nums,
position_map,
output_token_num,
bsz,
actual_draft_token_num,
input_token_num,
):
in_offset = 0
out_offset = 0
for i in range(bsz):
cur_base_model_seq_lens_this_time = base_model_seq_lens_this_time[i]
# cur_base_model_seq_lens_encoder = base_model_seq_lens_encoder[i]
cur_seq_lens_this_time = seq_lens_this_time[i]
accept_num = accept_nums[i]
cur_seq_lens_encoder = seq_lens_encoder[i]
# 1. eagle encoder. Base step=1
if cur_seq_lens_encoder > 0:
for j in range(cur_seq_lens_encoder):
position_map[in_offset] = out_offset
in_offset += 1
out_offset += 1
# 2. Base model stop at last verify-step.
elif cur_base_model_seq_lens_this_time != 0 and cur_seq_lens_this_time == 0:
in_offset += cur_base_model_seq_lens_this_time
# 4. stopped
elif cur_base_model_seq_lens_this_time == 0 and cur_seq_lens_this_time == 0: # end
pass
else:
for i in range(accept_num):
position_map[in_offset] = out_offset
in_offset += 1
out_offset += 1
in_offset += cur_base_model_seq_lens_this_time - accept_num
output_token_num[0] = out_offset
def rebuildHiddenStatesKernel(input, position_map, out, dim_embed, elem_cnt):
for elem_idx in range(elem_cnt):
ori_token_idx = int(elem_idx / dim_embed)
token_idx = position_map[ori_token_idx]
if token_idx >= 0:
offset = elem_idx % dim_embed
out[token_idx][offset] = input[ori_token_idx][offset]
def eagle_get_hidden_states_ref(
input,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
stop_flags,
accept_nums,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
actual_draft_token_num,
):
input_token_num = input.shape[0]
dim_embed = input.shape[1]
bsz = seq_lens_this_time.shape[0]
position_map = paddle.full([input_token_num], 0xFFFFFFFF, seq_lens_this_time.dtype)
output_token_num = paddle.empty([1], seq_lens_this_time.dtype)
ComputeOrderKernel(
seq_lens_this_time,
seq_lens_encoder,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
accept_nums,
position_map,
output_token_num,
bsz,
actual_draft_token_num,
input_token_num,
)
output_token_num_cpu = output_token_num[0]
out = paddle.empty([output_token_num_cpu, dim_embed], input.dtype)
elem_cnt = input_token_num * dim_embed
rebuildHiddenStatesKernel(input, position_map, out, dim_embed, elem_cnt)
return out
class TestEagleGetHiddenStates(unittest.TestCase):
def test_eagle_get_hidden_states(self):
np.random.seed(2023)
paddle.seed(2023)
bs = 2
input_token_num = 10
dim_embed = 512
actual_draft_token_num = np.random.randint(2, 6, dtype=np.int32)
seq_lens_this_time = np.random.randint(0, 2, bs, dtype=np.int32)
seq_lens_encoder = np.random.randint(0, input_token_num // bs + 1, bs, dtype=np.int32)
accept_nums = np.random.randint(0, actual_draft_token_num + 1, bs, dtype=np.int32)
base_model_seq_lens_this_time = np.random.randint(0, input_token_num // bs + 1, bs, dtype=np.int32)
base_model_seq_lens_encoder = np.random.randint(0, 2, bs, dtype=np.int32)
seq_lens_decoder = np.random.randint(0, input_token_num // bs + 1, bs, dtype=np.int32)
stop_flags = np.random.randint(0, 2, bs, dtype=np.int32)
seq_lens_this_time_tensor = paddle.to_tensor(seq_lens_this_time, dtype=paddle.int32)
seq_lens_encoder_tensor = paddle.to_tensor(seq_lens_encoder, dtype=paddle.int32)
accept_nums_tensor = paddle.to_tensor(accept_nums, dtype=paddle.int32)
base_model_seq_lens_this_time_tensor = paddle.to_tensor(base_model_seq_lens_this_time, dtype=paddle.int32)
base_model_seq_lens_encoder_tensor = paddle.to_tensor(base_model_seq_lens_encoder, dtype=paddle.int32)
seq_lens_decoder_tensor = paddle.to_tensor(seq_lens_decoder, dtype=paddle.int32)
stop_flags_tensor = paddle.to_tensor(stop_flags, dtype=paddle.int32)
input = np.random.randint(0, 10, (input_token_num, dim_embed), dtype=np.int32)
input_tensor = paddle.to_tensor(input, dtype=paddle.float16)
out = eagle_get_hidden_states(
input_tensor,
seq_lens_this_time_tensor,
seq_lens_encoder_tensor,
seq_lens_decoder_tensor,
stop_flags_tensor,
accept_nums_tensor,
base_model_seq_lens_this_time_tensor,
base_model_seq_lens_encoder_tensor,
actual_draft_token_num,
)
out_ref = eagle_get_hidden_states_ref(
input_tensor,
seq_lens_this_time_tensor,
seq_lens_encoder_tensor,
seq_lens_decoder_tensor,
stop_flags_tensor,
accept_nums_tensor,
base_model_seq_lens_this_time_tensor,
base_model_seq_lens_encoder_tensor,
actual_draft_token_num,
)
np.testing.assert_allclose(out.numpy(), out_ref.numpy())
if __name__ == "__main__":
unittest.main()