Files
FastDeploy/tests/operators/test_draft_model_update.py
co63oc ef4a1aa2da 【Hackathon 9th No.61、65】add test_draft_model_update (#3940)
* add draft_model_update test

* fix

* fix

* fix

* fix

* fix
2025-09-15 11:19:50 +08:00

249 lines
7.8 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import draft_model_update
def is_in_end(id, end_ids, length):
flag = False
for i in range(length):
if id == end_ids[i]:
return True
return flag
# recalculate data offset, offset_new is starting from index 0
def get_inter_next_tokens_start_offset(inter_next_tokens, max_seq_len, start_id, offset):
offset_new = start_id + offset
return inter_next_tokens[int(offset_new / max_seq_len)][int(offset_new % max_seq_len)]
def draft_model_update_kernel(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
bsz,
max_draft_token,
pre_id_length,
max_base_model_draft_token,
end_ids_len,
max_seq_len,
substep,
prefill_one_step_stop,
):
stop_sum = 0
for tid in range(bsz):
stop_flag_now_int = 0
draft_token_now = draft_tokens[tid]
pre_ids_now = pre_ids[tid]
base_model_draft_tokens_now = base_model_draft_tokens[tid]
next_tokens_start_id = tid * max_seq_len - output_cum_offsets[tid]
# next_tokens_start =
seq_len_this_time = seq_lens_this_time[tid]
seq_len_encoder = seq_lens_encoder[tid]
seq_len_decoder = seq_lens_decoder[tid]
# 1. update step_idx && seq_lens_dec
if not stop_flags[tid]: # seq_lens_decoder > 0 or seq_lens_encoder > 0
token_this_time = -1
# decoder step
if seq_len_decoder > 0 and seq_len_encoder <= 0:
seq_lens_decoder[tid] += seq_len_this_time
token_this_time = get_inter_next_tokens_start_offset(
inter_next_tokens, max_seq_len, next_tokens_start_id, seq_len_this_time - 1
)
draft_token_now[0] = token_this_time
base_model_draft_tokens_now[substep + 1] = token_this_time
step_idx[tid] += seq_len_this_time
pre_ids_now[step_idx[tid]] = token_this_time
else:
token_this_time = get_inter_next_tokens_start_offset(
inter_next_tokens, max_seq_len, next_tokens_start_id, 0
)
# seq_lens_decoder[tid] = seq_lens_encoder[tid]
seq_lens_decoder[tid] = seq_len_encoder + seq_len_decoder
seq_lens_encoder[tid] = 0
pre_ids_now[1] = token_this_time
step_idx[tid] += 1
draft_token_now[0] = token_this_time
base_model_draft_tokens_now[substep + 1] = token_this_time
# multi_end
if is_in_end(token_this_time, end_ids, end_ids_len) or prefill_one_step_stop:
stop_flags[tid] = True
stop_flag_now_int = 1
# max_dec_len
elif step_idx[tid] >= max_dec_len[tid]:
stop_flags[tid] = True
draft_token_now[seq_len_this_time - 1] = end_ids[0]
base_model_draft_tokens_now[substep + 1] = end_ids[0]
stop_flag_now_int = 1
else:
draft_token_now[0] = -1
base_model_draft_tokens_now[substep + 1] = -1
stop_flag_now_int = 1
# 2. set end
if not stop_flags[tid]:
seq_lens_this_time[tid] = 1
else:
seq_lens_this_time[tid] = 0
seq_lens_encoder[tid] = 0
stop_sum = stop_sum + stop_flag_now_int
not_need_stop[0] = stop_sum < bsz
def draft_model_update_ref(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
max_seq_len,
substep,
):
seq_lens_this_time_shape = seq_lens_this_time.shape
real_bsz = seq_lens_this_time_shape[0]
end_ids_len = end_ids.shape[0]
max_draft_token = draft_tokens.shape[1]
pre_id_length = pre_ids.shape[1]
max_base_model_draft_token = base_model_draft_tokens.shape[1]
prefill_one_step_stop = False
import os
env = os.getenv("PREFILL_NODE_ONE_STEP_STOP")
if env == "1":
prefill_one_step_stop = True
draft_model_update_kernel(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
real_bsz,
max_draft_token,
pre_id_length,
max_base_model_draft_token,
end_ids_len,
max_seq_len,
substep,
prefill_one_step_stop,
)
class TestDraftModelUpdate(unittest.TestCase):
def test_draft_model_update(self):
self._run_paddle_test()
def _run_paddle_test(self):
np.random.seed(42)
paddle.seed(42)
max_bsz = 128
max_draft_token = 3
pre_id_length = 3
max_seq_len = 100
max_base_model_draft_token = 4
substep = 2
inter_next_tokens = paddle.randint(1, 100, shape=(max_bsz, max_seq_len), dtype="int64")
draft_tokens = paddle.randint(1, 100, shape=(max_bsz, max_draft_token), dtype="int64")
pre_ids = paddle.randint(1, 100, shape=(max_bsz, pre_id_length), dtype="int64")
seq_lens_this_time = paddle.randint(1, 2, shape=(max_bsz,), dtype="int32")
seq_lens_encoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
seq_lens_decoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
step_idx = paddle.randint(1, 10, shape=(max_bsz,), dtype="int64")
output_cum_offsets = paddle.randint(0, 2, shape=(max_bsz,), dtype="int32")
output_cum_offsets[0] = 0
stop_flags = paddle.zeros([max_bsz], dtype="bool")
not_need_stop = paddle.zeros([1], dtype="bool").to(device=paddle.CPUPlace())
max_dec_len = paddle.randint(100, 102, shape=(max_bsz,), dtype="int64")
end_ids = paddle.to_tensor([2], dtype="int64")
base_model_draft_tokens = paddle.randint(1, 10, shape=(max_bsz, max_base_model_draft_token), dtype="int64")
inputs = (
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
max_seq_len,
substep,
)
# inplace modify, need to clone inputs
inputs_clone = [x.clone() if isinstance(x, paddle.Tensor) else x for x in inputs]
draft_model_update(*inputs)
draft_model_update_ref(*inputs_clone)
idx_list = (
1,
2,
3,
4,
5,
6,
8,
9,
12,
)
for i in idx_list:
np.testing.assert_allclose(inputs[i].numpy(), inputs_clone[i].numpy())
if __name__ == "__main__":
unittest.main()