Files
FastDeploy/tests/operators/test_draft_model_postprocess.py
co63oc e83251699f 【Hackathon 9th No.63】add test_draft_model_postprocess.py (#3757)
* add test_draft_model_postprocess.py

* fix

* fix
2025-09-04 15:00:48 +08:00

85 lines
3.2 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import draft_model_postprocess
def draft_model_postprocess_cpu(
base_model_draft_tokens,
base_model_seq_lens_encoder,
base_model_stop_flags,
):
bsz = base_model_draft_tokens.shape[0]
base_model_draft_token_len = base_model_draft_tokens.shape[1]
base_model_seq_lens_this_time = paddle.ones((bsz), dtype=paddle.int32)
for tid in range(bsz):
if (not base_model_stop_flags[tid]) and (base_model_seq_lens_encoder[tid] == 0):
base_model_draft_tokens_now = base_model_draft_tokens[tid]
token_num = 0
for i in range(base_model_draft_token_len):
if base_model_draft_tokens_now[i] != -1:
token_num += 1
base_model_seq_lens_this_time[tid] = token_num
elif base_model_stop_flags[tid]:
base_model_seq_lens_this_time[tid] = 0
return base_model_seq_lens_this_time
class TestDraftModelPostProcess(unittest.TestCase):
def _test_draft_model_postprocess(self, batch_size=1, base_model_draft_token_len=8192):
paddle.seed(66)
base_model_draft_tokens = paddle.randint(
low=-1,
high=1,
shape=[batch_size, base_model_draft_token_len],
dtype="int64",
)
base_model_seq_lens_encoder = paddle.randint(low=0, high=2, shape=[batch_size], dtype="int32")
random_floats = paddle.rand(shape=[batch_size])
base_model_stop_flags = random_floats >= 0.5
base_model_seq_lens_this_time = draft_model_postprocess_cpu(
base_model_draft_tokens,
base_model_seq_lens_encoder,
base_model_stop_flags,
)
base_model_seq_lens_this_time_gpu = paddle.ones((batch_size), dtype=paddle.int32)
draft_model_postprocess(
base_model_draft_tokens,
base_model_seq_lens_this_time_gpu,
base_model_seq_lens_encoder,
base_model_stop_flags,
)
np.testing.assert_allclose(base_model_seq_lens_this_time.numpy(), base_model_seq_lens_this_time_gpu.numpy())
def test_enough_cases(self):
self._test_draft_model_postprocess(100, 1024)
self._test_draft_model_postprocess(1, 11)
self._test_draft_model_postprocess(1, 8192)
self._test_draft_model_postprocess(2, 2048)
self._test_draft_model_postprocess(3, 1023)
self._test_draft_model_postprocess(4, 2047)
self._test_draft_model_postprocess(5, 4095)
self._test_draft_model_postprocess(10, 9191)
if __name__ == "__main__":
unittest.main()