mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
372 lines
16 KiB
Plaintext
372 lines
16 KiB
Plaintext
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "helper.h"
|
||
#include "save_with_output_msg.h"
|
||
|
||
#define RECOVERY_STOP_SIGNAL -3
|
||
|
||
__device__ bool in_need_block_list_schedule(const int &qid,
|
||
int *need_block_list,
|
||
const int &need_block_len) {
|
||
bool res = false;
|
||
for (int i = 0; i < need_block_len; i++) {
|
||
if (qid == need_block_list[i]) {
|
||
res = true;
|
||
need_block_list[i] = -1;
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
|
||
__global__ void free_and_reschedule(bool *stop_flags,
|
||
int *seq_lens_this_time,
|
||
int *seq_lens_decoder,
|
||
int *block_tables,
|
||
int *encoder_block_lens,
|
||
bool *is_block_step,
|
||
int *step_block_list, // [bsz]
|
||
int *step_len,
|
||
int *recover_block_list,
|
||
int *recover_len,
|
||
int *need_block_list,
|
||
int *need_block_len,
|
||
int *used_list_len,
|
||
int *free_list,
|
||
int *free_list_len,
|
||
int64_t *first_token_ids,
|
||
const int bsz,
|
||
const int block_size,
|
||
const int block_num_per_seq,
|
||
const int max_decoder_block_num) {
|
||
typedef cub::BlockReduce<cub::KeyValuePair<int, int>, 256> BlockReduce;
|
||
__shared__ typename BlockReduce::TempStorage temp_storage;
|
||
__shared__ bool step_max_block_flag;
|
||
__shared__ int in_need_block_list_len;
|
||
const int tid = threadIdx.x;
|
||
if (tid < bsz) {
|
||
if (tid == 0) {
|
||
step_max_block_flag = false;
|
||
in_need_block_list_len = 0;
|
||
}
|
||
int *block_table_now = block_tables + tid * block_num_per_seq;
|
||
if (stop_flags[tid]) {
|
||
// 回收block块
|
||
first_token_ids[tid] = -1;
|
||
const int encoder_block_len = encoder_block_lens[tid];
|
||
const int decoder_used_len = used_list_len[tid];
|
||
if (decoder_used_len > 0) {
|
||
const int ori_free_list_len =
|
||
atomicAdd(free_list_len, decoder_used_len);
|
||
#ifdef DEBUG_STEP
|
||
printf(
|
||
"free block seq_id: %d, free block num: %d, "
|
||
"encoder_block_len: %d, ori_free_list_len: %d\n",
|
||
tid,
|
||
decoder_used_len,
|
||
encoder_block_len,
|
||
ori_free_list_len);
|
||
#endif
|
||
for (int i = 0; i < decoder_used_len; i++) {
|
||
free_list[ori_free_list_len + i] =
|
||
block_table_now[encoder_block_len + i];
|
||
block_table_now[encoder_block_len + i] = -1;
|
||
}
|
||
encoder_block_lens[tid] = 0;
|
||
used_list_len[tid] = 0;
|
||
}
|
||
} else if (seq_lens_this_time[tid] != 0 &&
|
||
block_table_now[seq_lens_decoder[tid] / block_size] == -1) {
|
||
// 统计需要分配block的位置和总数
|
||
#ifdef DEBUG_STEP
|
||
printf("step seq_id:%d, ##### pin 1 #####\n", tid);
|
||
#endif
|
||
const int ori_need_block_len = atomicAdd(need_block_len, 1);
|
||
need_block_list[ori_need_block_len] = tid;
|
||
#ifdef DEBUG_STEP
|
||
printf("seq_id: %d need block\n", tid);
|
||
#endif
|
||
}
|
||
}
|
||
#ifdef DEBUG_STEP
|
||
printf("step seq_id:%d, ##### pin 2 #####\n", tid);
|
||
#endif
|
||
__syncthreads();
|
||
|
||
// 调度block,直到满足need_block_len
|
||
while (need_block_len[0] > free_list_len[0]) {
|
||
if (tid == 0) {
|
||
printf("need_block_len: %d, free_list_len: %d\n",
|
||
need_block_len[0],
|
||
free_list_len[0]);
|
||
}
|
||
// 调度block,根据used_list_len从大到小回收block,直到满足need_block_len,已解码到最后一个block的query不参与调度(马上就结束)
|
||
const int used_block_num =
|
||
tid < bsz ? used_list_len[tid] : 0;
|
||
cub::KeyValuePair<int, int> kv_pair = {tid, used_block_num};
|
||
kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, cub::ArgMax());
|
||
if (tid == 0) {
|
||
if (kv_pair.value == 0) {
|
||
step_max_block_flag = true;
|
||
} else {
|
||
const int encoder_block_len = encoder_block_lens[kv_pair.key];
|
||
printf("step max_id: %d, max_num: %d, encoder_block_len: %d\n",
|
||
kv_pair.key,
|
||
kv_pair.value,
|
||
encoder_block_len);
|
||
int *block_table_now =
|
||
block_tables + kv_pair.key * block_num_per_seq;
|
||
// 回收调度位的block
|
||
for (int i = 0; i < kv_pair.value; i++) {
|
||
free_list[free_list_len[0] + i] =
|
||
block_table_now[encoder_block_len + i];
|
||
block_table_now[encoder_block_len + i] = -1;
|
||
}
|
||
step_block_list[step_len[0]] = kv_pair.key;
|
||
// 如果调度位置本次也需要block,对应的处理
|
||
if (in_need_block_list_schedule(
|
||
kv_pair.key,
|
||
need_block_list,
|
||
need_block_len[0] + in_need_block_list_len)) {
|
||
need_block_len[0] -= 1;
|
||
in_need_block_list_len += 1;
|
||
}
|
||
step_len[0] += 1;
|
||
free_list_len[0] += kv_pair.value;
|
||
stop_flags[kv_pair.key] = true;
|
||
seq_lens_this_time[kv_pair.key] = 0;
|
||
seq_lens_decoder[kv_pair.key] = 0;
|
||
encoder_block_lens[kv_pair.key] = 0;
|
||
used_list_len[kv_pair.key] = 0;
|
||
printf(
|
||
"free block seq_id: %d, free block num: %d, "
|
||
"now_free_list_len: %d\n",
|
||
(int)kv_pair.key,
|
||
(int)kv_pair.value,
|
||
(int)free_list_len[0]);
|
||
}
|
||
}
|
||
__syncthreads();
|
||
}
|
||
#ifdef DEBUG_STEP
|
||
printf("step seq_id:%d, ##### pin 3 #####\n", tid);
|
||
#endif
|
||
// 为需要block的位置分配block,每个位置分配一个block
|
||
if (tid < need_block_len[0] + in_need_block_list_len) {
|
||
const int need_block_id = need_block_list[tid];
|
||
if (need_block_id != -1) {
|
||
if (!stop_flags[need_block_id]) {
|
||
// 如果需要的位置正好是上一步中被释放的位置,不做处理
|
||
used_list_len[need_block_id] += 1;
|
||
const int ori_free_list_len = atomicSub(free_list_len, 1);
|
||
int *block_table_now =
|
||
block_tables + need_block_id * block_num_per_seq;
|
||
block_table_now[seq_lens_decoder[need_block_id] / block_size] =
|
||
free_list[ori_free_list_len - 1];
|
||
}
|
||
need_block_list[tid] = -1;
|
||
}
|
||
}
|
||
__syncthreads();
|
||
// reset need_block_len
|
||
if (tid == 0) {
|
||
need_block_len[0] = 0;
|
||
}
|
||
}
|
||
|
||
// 为不修改接口调用方式,入参暂不改变
|
||
void Schedule(const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &ori_seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &block_tables, // [bsz, block_num_per_seq]
|
||
const paddle::Tensor &encoder_block_lens,
|
||
const paddle::Tensor &is_block_step,
|
||
const paddle::Tensor &step_block_list,
|
||
const paddle::Tensor &step_lens,
|
||
const paddle::Tensor &recover_block_list,
|
||
const paddle::Tensor &recover_lens,
|
||
const paddle::Tensor &need_block_list,
|
||
const paddle::Tensor &need_block_len,
|
||
const paddle::Tensor &used_list_len,
|
||
const paddle::Tensor &free_list,
|
||
const paddle::Tensor &free_list_len,
|
||
const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &next_tokens,
|
||
const paddle::Tensor &first_token_ids,
|
||
const int block_size,
|
||
const int encoder_decoder_block_num) {
|
||
auto cu_stream = seq_lens_this_time.stream();
|
||
const int bsz = seq_lens_this_time.shape()[0];
|
||
const int block_num_per_seq = block_tables.shape()[1];
|
||
const int length = input_ids.shape()[1];
|
||
const int pre_id_length = pre_ids.shape()[1];
|
||
constexpr int BlockSize = 256; // bsz <= 256
|
||
const int max_decoder_block_num = length / block_size - encoder_decoder_block_num; // 最大输出长度对应的block - 服务为解码分配的block数量
|
||
auto step_lens_inkernel = paddle::full({1}, 0, paddle::DataType::INT32, stop_flags.place());
|
||
auto step_bs_list = GetEmptyTensor({bsz}, paddle::DataType::INT32, stop_flags.place());
|
||
#ifdef DEBUG_STEP
|
||
printf(
|
||
"bsz: %d, block_num_per_seq: %d, length: %d, max_decoder_block_num: "
|
||
"%d\n",
|
||
bsz,
|
||
block_num_per_seq,
|
||
length,
|
||
max_decoder_block_num);
|
||
#endif
|
||
free_and_reschedule<<<1, BlockSize, 0, cu_stream>>>(
|
||
const_cast<bool *>(stop_flags.data<bool>()),
|
||
const_cast<int *>(seq_lens_this_time.data<int>()),
|
||
const_cast<int *>(seq_lens_decoder.data<int>()),
|
||
const_cast<int *>(block_tables.data<int>()),
|
||
const_cast<int *>(encoder_block_lens.data<int>()),
|
||
const_cast<bool *>(is_block_step.data<bool>()),
|
||
const_cast<int *>(step_bs_list.data<int>()),
|
||
const_cast<int *>(step_lens_inkernel.data<int>()),
|
||
const_cast<int *>(recover_block_list.data<int>()),
|
||
const_cast<int *>(recover_lens.data<int>()),
|
||
const_cast<int *>(need_block_list.data<int>()),
|
||
const_cast<int *>(need_block_len.data<int>()),
|
||
const_cast<int *>(used_list_len.data<int>()),
|
||
const_cast<int *>(free_list.data<int>()),
|
||
const_cast<int *>(free_list_len.data<int>()),
|
||
const_cast<int64_t *>(first_token_ids.data<int64_t>()),
|
||
bsz,
|
||
block_size,
|
||
block_num_per_seq,
|
||
max_decoder_block_num);
|
||
#ifdef DEBUG_STEP
|
||
cudaDeviceSynchronize();
|
||
#endif
|
||
// save output
|
||
auto step_lens_cpu = step_lens_inkernel.copy_to(paddle::CPUPlace(), false);
|
||
if (step_lens_cpu.data<int>()[0] > 0) {
|
||
auto step_bs_list_cpu = step_bs_list.copy_to(paddle::CPUPlace(), false);
|
||
auto next_tokens = paddle::full({bsz}, -1, paddle::DataType::INT64, paddle::CPUPlace());
|
||
for (int i = 0; i < step_lens_cpu.data<int>()[0]; i++) {
|
||
const int step_bid = step_bs_list_cpu.data<int>()[i];
|
||
next_tokens.data<int64_t>()[step_bid] = RECOVERY_STOP_SIGNAL; // need reschedule
|
||
}
|
||
const int rank_id = static_cast<int>(stop_flags.place().GetDeviceId());
|
||
printf("reschedule rank_id: %d, step_lens: %d", rank_id, step_lens_cpu.data<int>()[0]);
|
||
const int64_t* x_data = next_tokens.data<int64_t>();
|
||
static struct msgdata msg_sed;
|
||
int msg_queue_id = rank_id;
|
||
if (const char* inference_msg_queue_id_env_p =
|
||
std::getenv("INFERENCE_MSG_QUEUE_ID")) {
|
||
std::string inference_msg_queue_id_env_str(
|
||
inference_msg_queue_id_env_p);
|
||
int inference_msg_queue_id_from_env =
|
||
std::stoi(inference_msg_queue_id_env_str);
|
||
msg_queue_id = inference_msg_queue_id_from_env;
|
||
} else {
|
||
std::cout << "Failed to got INFERENCE_MSG_QUEUE_ID at env, use default."
|
||
<< std::endl;
|
||
}
|
||
int inference_msg_id_from_env = 1;
|
||
if (const char* inference_msg_id_env_p = std::getenv("INFERENCE_MSG_ID")) {
|
||
std::string inference_msg_id_env_str(inference_msg_id_env_p);
|
||
inference_msg_id_from_env = std::stoi(inference_msg_id_env_str);
|
||
if (inference_msg_id_from_env == 2) {
|
||
// 2 and -2 is preserve for no-output indication.
|
||
throw std::runtime_error(
|
||
" INFERENCE_MSG_ID cannot be 2, please use other number.");
|
||
}
|
||
if (inference_msg_id_from_env < 0) {
|
||
throw std::runtime_error(
|
||
" INFERENCE_MSG_ID cannot be negative, please use other "
|
||
"number.");
|
||
}
|
||
}
|
||
static key_t key = ftok("/dev/shm", msg_queue_id);
|
||
|
||
static int msgid = msgget(key, IPC_CREAT | 0666);
|
||
msg_sed.mtype = 1;
|
||
msg_sed.mtext[0] = inference_msg_id_from_env;
|
||
msg_sed.mtext[1] = bsz;
|
||
for (int i = 2; i < bsz + 2; i++) {
|
||
msg_sed.mtext[i] = (int)x_data[i - 2];
|
||
}
|
||
if ((msgsnd(msgid, &msg_sed, (MAX_BSZ + 2) * 4, 0)) == -1) {
|
||
printf("full msg buffer\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
PD_BUILD_STATIC_OP(step_reschedule)
|
||
.Inputs({"stop_flags",
|
||
"seq_lens_this_time",
|
||
"ori_seq_lens_encoder",
|
||
"seq_lens_encoder",
|
||
"seq_lens_decoder",
|
||
"block_tables",
|
||
"encoder_block_lens",
|
||
"is_block_step",
|
||
"step_block_list",
|
||
"step_lens",
|
||
"recover_block_list",
|
||
"recover_lens",
|
||
"need_block_list",
|
||
"need_block_len",
|
||
"used_list_len",
|
||
"free_list",
|
||
"free_list_len",
|
||
"input_ids",
|
||
"pre_ids",
|
||
"step_idx",
|
||
"next_tokens",
|
||
"first_token_ids"})
|
||
.Attrs({"block_size: int", "encoder_decoder_block_num: int"})
|
||
.Outputs({"stop_flags_out",
|
||
"seq_lens_this_time_out",
|
||
"seq_lens_encoder_out",
|
||
"seq_lens_decoder_out",
|
||
"block_tables_out",
|
||
"encoder_block_lens_out",
|
||
"is_block_step_out",
|
||
"step_block_list_out",
|
||
"step_lens_out",
|
||
"recover_block_list_out",
|
||
"recover_lens_out",
|
||
"need_block_list_out",
|
||
"need_block_len_out",
|
||
"used_list_len_out",
|
||
"free_list_out",
|
||
"free_list_len_out",
|
||
"input_ids_out",
|
||
"first_token_ids_out"})
|
||
.SetInplaceMap({{"stop_flags", "stop_flags_out"},
|
||
{"seq_lens_this_time", "seq_lens_this_time_out"},
|
||
{"seq_lens_encoder", "seq_lens_encoder_out"},
|
||
{"seq_lens_decoder", "seq_lens_decoder_out"},
|
||
{"block_tables", "block_tables_out"},
|
||
{"encoder_block_lens", "encoder_block_lens_out"},
|
||
{"is_block_step", "is_block_step_out"},
|
||
{"step_block_list", "step_block_list_out"},
|
||
{"step_lens", "step_lens_out"},
|
||
{"recover_block_list", "recover_block_list_out"},
|
||
{"recover_lens", "recover_lens_out"},
|
||
{"need_block_list", "need_block_list_out"},
|
||
{"need_block_len", "need_block_len_out"},
|
||
{"used_list_len", "used_list_len_out"},
|
||
{"free_list", "free_list_out"},
|
||
{"free_list_len", "free_list_len_out"},
|
||
{"input_ids", "input_ids_out"},
|
||
{"first_token_ids", "first_token_ids_out"}})
|
||
.SetKernelFn(PD_KERNEL(Schedule));
|