mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-01 14:52:33 +08:00
141 lines
7.1 KiB
C++
141 lines
7.1 KiB
C++
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "paddle/extension.h"
|
||
#include <map>
|
||
|
||
std::vector<paddle::Tensor> GetMmSplitFuse(const paddle::Tensor& task_input_ids,
|
||
const paddle::Tensor& task_image_type_ids,
|
||
const paddle::Tensor& task_input_ids_image_token_count,
|
||
const paddle::Tensor& grid_thw,
|
||
int64_t image_token_id,
|
||
int64_t img_total,
|
||
int batch_idx,
|
||
int seq_lens_origin,
|
||
int split_fuse_img_size,
|
||
int split_fuse_text_size,
|
||
int max_chunk_token_size) {
|
||
// All tensor in cpu
|
||
auto input_ids_cpu = task_input_ids.data<int64_t>();
|
||
auto image_type_ids_cpu = task_image_type_ids.data<int>();
|
||
auto task_input_ids_image_token_count_cpu = task_input_ids_image_token_count.data<int>();
|
||
auto grid_thw_cpu = grid_thw.data<int64_t>();
|
||
int chunk_token_count = 0;
|
||
int chunk_image_cout = 0;
|
||
int idx = 0;
|
||
std::vector<int> image_chunk_selections_vector;
|
||
std::vector<int> split_fuse_cur_seq_lens_vector;
|
||
std::vector<int> split_fuse_cur_idx_vector;
|
||
split_fuse_cur_idx_vector.emplace_back(0);
|
||
int image_idx = 0;
|
||
int last_ib = 0;
|
||
// 打表参数, mp记录可划分chunk的位置
|
||
std::map<int, int> mp;
|
||
int st_idx = 0;
|
||
int last_st_ib = 0;
|
||
while (st_idx < seq_lens_origin) {
|
||
// 1. 当前st_idx为文本,找到文本末尾
|
||
if (input_ids_cpu[st_idx] != image_token_id) {
|
||
do {
|
||
st_idx ++;
|
||
} while (st_idx < seq_lens_origin && input_ids_cpu[st_idx] != image_token_id);
|
||
mp[st_idx] = 1; // 记录划分chunk的末尾位置,此处为文本的末位+1
|
||
} else { // 2. 当前st_idx为多模,根据多模token的长度找到末尾
|
||
int ib = last_st_ib;
|
||
int cur_st_len = 0;
|
||
int token_times = 4;
|
||
cur_st_len = (grid_thw_cpu[ib * 3 + 1] * grid_thw_cpu[ib * 3 + 2]) / token_times;
|
||
mp[st_idx + cur_st_len] = 1;
|
||
last_st_ib = ++ib;
|
||
st_idx += cur_st_len;
|
||
}
|
||
}
|
||
|
||
while (idx < seq_lens_origin) {
|
||
idx = idx + split_fuse_text_size;
|
||
if (idx >= seq_lens_origin) {
|
||
// idx 超过最大seq_len,应该包含n个图片和文本
|
||
idx = seq_lens_origin;
|
||
int last_idx = split_fuse_cur_idx_vector.back();
|
||
int chunk_image_token_number = task_input_ids_image_token_count_cpu[idx] - task_input_ids_image_token_count_cpu[last_idx];
|
||
int chunk_image_number = 0;
|
||
int cur_img_len = 0;
|
||
int ib = last_ib;
|
||
while (ib < img_total && cur_img_len < chunk_image_token_number){
|
||
int token_times = 4;
|
||
cur_img_len += (grid_thw_cpu[ib * 3 + 1] * grid_thw_cpu[ib * 3 + 2]) / token_times;
|
||
ib ++;
|
||
chunk_image_number ++;
|
||
}
|
||
image_chunk_selections_vector.emplace_back(chunk_image_number);
|
||
split_fuse_cur_seq_lens_vector.emplace_back(idx - last_idx);
|
||
split_fuse_cur_idx_vector.emplace_back(idx);
|
||
continue;
|
||
}
|
||
// text
|
||
if (input_ids_cpu[idx-1] != image_token_id) {
|
||
// case1. 如果切到text, 直接分chunk
|
||
int last_idx = split_fuse_cur_idx_vector.back();
|
||
int chunk_image_token_number = task_input_ids_image_token_count_cpu[idx] - task_input_ids_image_token_count_cpu[last_idx];
|
||
int chunk_image_number = 0;
|
||
int cur_img_len = 0;
|
||
int ib = last_ib;
|
||
while (ib < img_total && cur_img_len < chunk_image_token_number) {
|
||
int token_times = 4;
|
||
cur_img_len += (grid_thw_cpu[ib * 3 + 1] * grid_thw_cpu[ib * 3 + 2]) / token_times;
|
||
ib ++;
|
||
chunk_image_number ++;
|
||
}
|
||
image_chunk_selections_vector.emplace_back(chunk_image_number);
|
||
split_fuse_cur_seq_lens_vector.emplace_back(idx - last_idx); // split_fuse_text_size
|
||
last_ib = ib; // last_ib记录遍历到第几张图
|
||
split_fuse_cur_idx_vector.emplace_back(idx);
|
||
continue;
|
||
} else {
|
||
// case2. 如果切到图片,从当前图片往后找。往前找会出现边界问题
|
||
// case2.1 如果split_size = img_token_num, mp[idx]==1, 直接按当前idx切分chunk
|
||
while (idx < seq_lens_origin && mp[idx] != 1) {
|
||
idx++;
|
||
} // idx指向切分chunk的位置
|
||
int last_idx = split_fuse_cur_idx_vector.back();
|
||
int chunk_image_token_number = task_input_ids_image_token_count_cpu[idx] - task_input_ids_image_token_count_cpu[last_idx];
|
||
int chunk_image_number = 0;
|
||
int cur_img_len = 0;
|
||
int ib = last_ib;
|
||
while (ib < img_total && cur_img_len < chunk_image_token_number) {
|
||
int token_times = 4;
|
||
cur_img_len += (grid_thw_cpu[ib * 3 + 1] * grid_thw_cpu[ib * 3 + 2]) / token_times;
|
||
ib ++;
|
||
chunk_image_number ++;
|
||
}
|
||
image_chunk_selections_vector.emplace_back(chunk_image_number);
|
||
split_fuse_cur_seq_lens_vector.emplace_back(idx - last_idx);
|
||
split_fuse_cur_idx_vector.emplace_back(idx);
|
||
last_ib = ib;
|
||
continue;
|
||
}
|
||
}
|
||
auto image_chunk_selections_out_cpu = paddle::from_blob(image_chunk_selections_vector.data(), {image_chunk_selections_vector.size()}, task_image_type_ids.dtype());
|
||
auto split_fuse_cur_seq_lens_out_cpu = paddle::from_blob(split_fuse_cur_seq_lens_vector.data(), {split_fuse_cur_seq_lens_vector.size()}, task_image_type_ids.dtype());
|
||
auto image_chunk_selections_out = paddle::experimental::copy_to(image_chunk_selections_out_cpu, task_image_type_ids.place(), false);
|
||
auto split_fuse_cur_seq_lens_out = paddle::experimental::copy_to(split_fuse_cur_seq_lens_out_cpu, task_image_type_ids.place(), false);
|
||
return {image_chunk_selections_out, split_fuse_cur_seq_lens_out};
|
||
}
|
||
|
||
PD_BUILD_OP(get_mm_split_fuse)
|
||
.Inputs({"task_input_ids", "task_image_type_ids", "task_input_ids_image_token_count", "grid_thw"})
|
||
.Attrs({"image_token_id: int64_t", "img_total: int64_t", "batch_idx: int", "seq_lens_origin: int", "split_fuse_img_size: int", "split_fuse_text_size: int", "max_chunk_token_size: int"})
|
||
.Outputs({"image_chunk_selections", "split_fuse_cur_seq_lens"})
|
||
.SetKernelFn(PD_KERNEL(GetMmSplitFuse));
|