Files
FastDeploy/online_serving/index.html

2359 lines
56 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link rel="prev" href="../get_started/quick_start_qwen/">
<link rel="next" href="metrics/">
<link rel="icon" href="../assets/images/favicon.ico">
<meta name="generator" content="mkdocs-1.6.1, mkdocs-material-9.6.20">
<title>OpenAI-Compatible API Server - FastDeploy: Large Language Model Deployment</title>
<link rel="stylesheet" href="../assets/stylesheets/main.e53b48f4.min.css">
<link rel="stylesheet" href="../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
<script>__md_scope=new URL("..",location),__md_hash=e=>[...e].reduce(((e,_)=>(e<<5)-e+_.charCodeAt(0)),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="indigo" data-md-color-accent="indigo">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#openai-protocol-compatible-api-server" class="md-skip">
Skip to content
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="Header">
<a href=".." title="FastDeploy: Large Language Model Deployment" class="md-header__button md-logo" aria-label="FastDeploy: Large Language Model Deployment" data-md-component="logo">
<img src="../assets/images/logo.jpg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3zm0 5h18v2H3zm0 5h18v2H3z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
FastDeploy: Large Language Model Deployment
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
OpenAI-Compatible API Server
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="(prefers-color-scheme: light)" data-md-color-scheme="default" data-md-color-primary="indigo" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a4 4 0 0 0-4 4 4 4 0 0 0 4 4 4 4 0 0 0 4-4 4 4 0 0 0-4-4m0 10a6 6 0 0 1-6-6 6 6 0 0 1 6-6 6 6 0 0 1 6 6 6 6 0 0 1-6 6m8-9.31V4h-4.69L12 .69 8.69 4H4v4.69L.69 12 4 15.31V20h4.69L12 23.31 15.31 20H20v-4.69L23.31 12z"/></svg>
</label>
<input class="md-option" data-md-color-media="(prefers-color-scheme: dark)" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="indigo" aria-label="Switch to system preference" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to system preference" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 18c-.89 0-1.74-.2-2.5-.55C11.56 16.5 13 14.42 13 12s-1.44-4.5-3.5-5.45C10.26 6.2 11.11 6 12 6a6 6 0 0 1 6 6 6 6 0 0 1-6 6m8-9.31V4h-4.69L12 .69 8.69 4H4v4.69L.69 12 4 15.31V20h4.69L12 23.31 15.31 20H20v-4.69L23.31 12z"/></svg>
</label>
</form>
<script>var palette=__md_get("__palette");if(palette&&palette.color){if("(prefers-color-scheme)"===palette.color.media){var media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent")}for(var[key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="Select language">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.5 17.5 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11zM18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2zm-2.62 7 1.62-4.33L19.12 17z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="./" hreflang="en" class="md-select__link">
English
</a>
</li>
<li class="md-select__item">
<a href="../zh/online_serving/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.52 6.52 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.52 6.52 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11z"/></svg>
</label>
<nav class="md-search__options" aria-label="Search">
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12z"/></svg>
</button>
</nav>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" tabindex="0" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
Initializing search
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/PaddlePaddle/FastDeploy" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 7.0.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M439.6 236.1 244 40.5c-5.4-5.5-12.8-8.5-20.4-8.5s-15 3-20.4 8.4L162.5 81l51.5 51.5c27.1-9.1 52.7 16.8 43.4 43.7l49.7 49.7c34.2-11.8 61.2 31 35.5 56.7-26.5 26.5-70.2-2.9-56-37.3L240.3 199v121.9c25.3 12.5 22.3 41.8 9.1 55-6.4 6.4-15.2 10.1-24.3 10.1s-17.8-3.6-24.3-10.1c-17.6-17.6-11.1-46.9 11.2-56v-123c-20.8-8.5-24.6-30.7-18.6-45L142.6 101 8.5 235.1C3 240.6 0 247.9 0 255.5s3 15 8.5 20.4l195.6 195.7c5.4 5.4 12.7 8.4 20.4 8.4s15-3 20.4-8.4l194.7-194.7c5.4-5.4 8.4-12.8 8.4-20.4s-3-15-8.4-20.4"/></svg>
</div>
<div class="md-source__repository">
FastDeploy
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href=".." title="FastDeploy: Large Language Model Deployment" class="md-nav__button md-logo" aria-label="FastDeploy: Large Language Model Deployment" data-md-component="logo">
<img src="../assets/images/logo.jpg" alt="logo">
</a>
FastDeploy: Large Language Model Deployment
</label>
<div class="md-nav__source">
<a href="https://github.com/PaddlePaddle/FastDeploy" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 7.0.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M439.6 236.1 244 40.5c-5.4-5.5-12.8-8.5-20.4-8.5s-15 3-20.4 8.4L162.5 81l51.5 51.5c27.1-9.1 52.7 16.8 43.4 43.7l49.7 49.7c34.2-11.8 61.2 31 35.5 56.7-26.5 26.5-70.2-2.9-56-37.3L240.3 199v121.9c25.3 12.5 22.3 41.8 9.1 55-6.4 6.4-15.2 10.1-24.3 10.1s-17.8-3.6-24.3-10.1c-17.6-17.6-11.1-46.9 11.2-56v-123c-20.8-8.5-24.6-30.7-18.6-45L142.6 101 8.5 235.1C3 240.6 0 247.9 0 255.5s3 15 8.5 20.4l195.6 195.7c5.4 5.4 12.7 8.4 20.4 8.4s15-3 20.4-8.4l194.7-194.7c5.4-5.4 8.4-12.8 8.4-20.4s-3-15-8.4-20.4"/></svg>
</div>
<div class="md-source__repository">
FastDeploy
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href=".." class="md-nav__link">
<span class="md-ellipsis">
FastDeploy
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<label class="md-nav__link" for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-ellipsis">
Quick Start
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
Quick Start
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2_1" >
<label class="md-nav__link" for="__nav_2_1" id="__nav_2_1_label" tabindex="0">
<span class="md-ellipsis">
Installation
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="2" aria-labelledby="__nav_2_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2_1">
<span class="md-nav__icon md-icon"></span>
Installation
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../get_started/installation/nvidia_gpu/" class="md-nav__link">
<span class="md-ellipsis">
Nvidia GPU
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/installation/kunlunxin_xpu/" class="md-nav__link">
<span class="md-ellipsis">
KunlunXin XPU
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/installation/hygon_dcu/" class="md-nav__link">
<span class="md-ellipsis">
HYGON DCU
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/installation/Enflame_gcu/" class="md-nav__link">
<span class="md-ellipsis">
Enflame S60
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/installation/iluvatar_gpu/" class="md-nav__link">
<span class="md-ellipsis">
Iluvatar CoreX
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/installation/metax_gpu/" class="md-nav__link">
<span class="md-ellipsis">
Metax C550
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../get_started/quick_start/" class="md-nav__link">
<span class="md-ellipsis">
Quick Deployment For ERNIE-4.5-0.3B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/quick_start_vl/" class="md-nav__link">
<span class="md-ellipsis">
Quick Deployment for ERNIE-4.5-VL-28B-A3B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/ernie-4.5/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-300B-A47B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/ernie-4.5-vl/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-VL-424B-A47B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../get_started/quick_start_qwen/" class="md-nav__link">
<span class="md-ellipsis">
Quick Deployment For QWEN
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" checked>
<label class="md-nav__link" for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-ellipsis">
Online Serving
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
Online Serving
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
OpenAI-Compatible API Server
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
OpenAI-Compatible API Server
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#chat-completion-api" class="md-nav__link">
<span class="md-ellipsis">
Chat Completion API
</span>
</a>
<nav class="md-nav" aria-label="Chat Completion API">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#sending-user-requests" class="md-nav__link">
<span class="md-ellipsis">
Sending User Requests
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#compatible-openai-parameters" class="md-nav__link">
<span class="md-ellipsis">
Compatible OpenAI Parameters
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#additional-parameters-added-by-fastdeploy" class="md-nav__link">
<span class="md-ellipsis">
Additional Parameters Added by FastDeploy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#differences-in-return-fields" class="md-nav__link">
<span class="md-ellipsis">
Differences in Return Fields
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#completion-api" class="md-nav__link">
<span class="md-ellipsis">
Completion API
</span>
</a>
<nav class="md-nav" aria-label="Completion API">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#sending-user-requests_1" class="md-nav__link">
<span class="md-ellipsis">
Sending User Requests
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#compatible-openai-parameters_1" class="md-nav__link">
<span class="md-ellipsis">
Compatible OpenAI Parameters
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#additional-parameters-added-by-fastdeploy_1" class="md-nav__link">
<span class="md-ellipsis">
Additional Parameters Added by FastDeploy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#overview-of-return-parameters" class="md-nav__link">
<span class="md-ellipsis">
Overview of Return Parameters
</span>
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="metrics/" class="md-nav__link">
<span class="md-ellipsis">
Monitor Metrics
</span>
</a>
</li>
<li class="md-nav__item">
<a href="scheduler/" class="md-nav__link">
<span class="md-ellipsis">
Scheduler
</span>
</a>
</li>
<li class="md-nav__item">
<a href="graceful_shutdown_service/" class="md-nav__link">
<span class="md-ellipsis">
Graceful Shutdown
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../offline_inference/" class="md-nav__link">
<span class="md-ellipsis">
Offline Inference
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<label class="md-nav__link" for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-ellipsis">
Best Practices
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
Best Practices
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../best_practices/ERNIE-4.5-0.3B-Paddle/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-0.3B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../best_practices/ERNIE-4.5-21B-A3B-Paddle/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-21B-A3B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../best_practices/ERNIE-4.5-300B-A47B-Paddle/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-300B-A47B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../best_practices/ERNIE-4.5-21B-A3B-Thinking/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-21B-A3B-Thinking
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../best_practices/ERNIE-4.5-VL-28B-A3B-Paddle/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-VL-28B-A3B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../best_practices/ERNIE-4.5-VL-424B-A47B-Paddle/" class="md-nav__link">
<span class="md-ellipsis">
ERNIE-4.5-VL-424B-A47B
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../best_practices/FAQ/" class="md-nav__link">
<span class="md-ellipsis">
FAQ
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<label class="md-nav__link" for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-ellipsis">
Quantization
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
Quantization
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../quantization/" class="md-nav__link">
<span class="md-ellipsis">
Overview
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../quantization/online_quantization/" class="md-nav__link">
<span class="md-ellipsis">
Online Quantization
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../quantization/wint2/" class="md-nav__link">
<span class="md-ellipsis">
WINT2 Quantization
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<label class="md-nav__link" for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-ellipsis">
Features
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
Features
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../features/prefix_caching/" class="md-nav__link">
<span class="md-ellipsis">
Prefix Caching
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/disaggregated/" class="md-nav__link">
<span class="md-ellipsis">
Disaggregation
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/chunked_prefill/" class="md-nav__link">
<span class="md-ellipsis">
Chunked Prefill
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/load_balance/" class="md-nav__link">
<span class="md-ellipsis">
Load Balance
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/speculative_decoding/" class="md-nav__link">
<span class="md-ellipsis">
Speculative Decoding
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/structured_outputs/" class="md-nav__link">
<span class="md-ellipsis">
Structured Outputs
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/reasoning_output/" class="md-nav__link">
<span class="md-ellipsis">
Reasoning Output
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/early_stop/" class="md-nav__link">
<span class="md-ellipsis">
Early Stop
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/plugins/" class="md-nav__link">
<span class="md-ellipsis">
Plugins
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/sampling/" class="md-nav__link">
<span class="md-ellipsis">
Sampling
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/multi-node_deployment/" class="md-nav__link">
<span class="md-ellipsis">
MultiNode Deployment
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/graph_optimization/" class="md-nav__link">
<span class="md-ellipsis">
Graph Optimization
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/data_parallel_service/" class="md-nav__link">
<span class="md-ellipsis">
Data Parallelism
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../features/plas_attention/" class="md-nav__link">
<span class="md-ellipsis">
PLAS
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../supported_models/" class="md-nav__link">
<span class="md-ellipsis">
Supported Models
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../benchmark/" class="md-nav__link">
<span class="md-ellipsis">
Benchmark
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<label class="md-nav__link" for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-ellipsis">
Usage
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
Usage
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../usage/log/" class="md-nav__link">
<span class="md-ellipsis">
Log Description
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../usage/code_overview/" class="md-nav__link">
<span class="md-ellipsis">
Code Overview
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../usage/environment_variables/" class="md-nav__link">
<span class="md-ellipsis">
Environment Variables
</span>
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#chat-completion-api" class="md-nav__link">
<span class="md-ellipsis">
Chat Completion API
</span>
</a>
<nav class="md-nav" aria-label="Chat Completion API">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#sending-user-requests" class="md-nav__link">
<span class="md-ellipsis">
Sending User Requests
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#compatible-openai-parameters" class="md-nav__link">
<span class="md-ellipsis">
Compatible OpenAI Parameters
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#additional-parameters-added-by-fastdeploy" class="md-nav__link">
<span class="md-ellipsis">
Additional Parameters Added by FastDeploy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#differences-in-return-fields" class="md-nav__link">
<span class="md-ellipsis">
Differences in Return Fields
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#completion-api" class="md-nav__link">
<span class="md-ellipsis">
Completion API
</span>
</a>
<nav class="md-nav" aria-label="Completion API">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#sending-user-requests_1" class="md-nav__link">
<span class="md-ellipsis">
Sending User Requests
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#compatible-openai-parameters_1" class="md-nav__link">
<span class="md-ellipsis">
Compatible OpenAI Parameters
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#additional-parameters-added-by-fastdeploy_1" class="md-nav__link">
<span class="md-ellipsis">
Additional Parameters Added by FastDeploy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#overview-of-return-parameters" class="md-nav__link">
<span class="md-ellipsis">
Overview of Return Parameters
</span>
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<h1 id="openai-protocol-compatible-api-server">OpenAI Protocol-Compatible API Server</h1>
<p>FastDeploy provides a service-oriented deployment solution that is compatible with the OpenAI protocol. Users can quickly deploy it using the following command:</p>
<pre><code class="language-bash">python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-0.3B-Paddle \
--port 8188 --tensor-parallel-size 8 \
--max-model-len 32768
</code></pre>
<p>To enable log probability output, simply deploy with the following command:</p>
<pre><code class="language-bash">python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-0.3B-Paddle \
--port 8188 --tensor-parallel-size 8 \
--max-model-len 32768 \
--enable-logprob
</code></pre>
<p>For more usage methods of the command line during service deployment, refer to <a href="../parameters/">Parameter Descriptions</a>.</p>
<h2 id="chat-completion-api">Chat Completion API</h2>
<p>FastDeploy provides a Chat Completion API that is compatible with the OpenAI protocol, allowing user requests to be sent directly using OpenAI's request method.</p>
<h3 id="sending-user-requests">Sending User Requests</h3>
<p>Here is an example of sending a user request using the curl command:</p>
<pre><code class="language-bash">curl -X POST &quot;http://0.0.0.0:8188/v1/chat/completions&quot; \
-H &quot;Content-Type: application/json&quot; \
-d '{
&quot;messages&quot;: [
{&quot;role&quot;: &quot;user&quot;, &quot;content&quot;: &quot;Hello!&quot;}
]
}'
</code></pre>
<p>Here's an example curl command demonstrating how to include the logprobs parameter in a user request:</p>
<pre><code class="language-bash">curl -X POST &quot;http://0.0.0.0:8188/v1/chat/completions&quot; \
-H &quot;Content-Type: application/json&quot; \
-d '{
&quot;messages&quot;: [
{&quot;role&quot;: &quot;user&quot;, &quot;content&quot;: &quot;Hello!&quot;}
],
&quot;logprobs&quot;: true, &quot;top_logprobs&quot;: 0,
}'
</code></pre>
<p>Here is an example of sending a user request using a Python script:</p>
<pre><code class="language-python">import openai
host = &quot;0.0.0.0&quot;
port = &quot;8170&quot;
client = openai.Client(base_url=f&quot;http://{host}:{port}/v1&quot;, api_key=&quot;null&quot;)
response = client.chat.completions.create(
model=&quot;null&quot;,
messages=[
{&quot;role&quot;: &quot;system&quot;, &quot;content&quot;: &quot;I'm a helpful AI assistant.&quot;},
{&quot;role&quot;: &quot;user&quot;, &quot;content&quot;: &quot;Rewrite Li Bai's 'Quiet Night Thought' as a modern poem&quot;},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
</code></pre>
<p>For a description of the OpenAI protocol, refer to the document <a href="https://platform.openai.com/docs/api-reference/chat/create">OpenAI Chat Completion API</a>.</p>
<h3 id="compatible-openai-parameters">Compatible OpenAI Parameters</h3>
<pre><code class="language-python">messages: Union[List[Any], List[int]]
# List of input messages, which can be text messages (`List[Any]`, typically `List[dict]`) or token ID lists (`List[int]`).
tools: Optional[List[ChatCompletionToolsParam]] = None
# List of tool call configurations, used for enabling function calling (Function Calling) or tool usage (e.g., ReAct framework).
model: Optional[str] = &quot;default&quot;
# Specifies the model name or version to use, defaulting to `&quot;default&quot;` (which may point to the base model).
frequency_penalty: Optional[float] = None
# Frequency penalty coefficient, reducing the probability of generating the same token repeatedly (`&gt;1.0` suppresses repetition, `&lt;1.0` encourages repetition, default `None` disables).
logprobs: Optional[bool] = False
# Whether to return the log probabilities of each generated token, used for debugging or analysis.
top_logprobs: Optional[int] = 0
# Returns the top `top_logprobs` tokens and their log probabilities for each generated position (default `0` means no return).
max_tokens: Optional[int] = Field(
default=None,
deprecated=&quot;max_tokens is deprecated in favor of the max_completion_tokens field&quot;,
)
# Deprecated: Maximum number of tokens to generate (recommended to use `max_completion_tokens` instead).
max_completion_tokens: Optional[int] = None
# Maximum number of tokens to generate (recommended alternative to `max_tokens`), no default limit (restricted by the model's context window).
presence_penalty: Optional[float] = None
# Presence penalty coefficient, reducing the probability of generating new topics (unseen topics) (`&gt;1.0` suppresses new topics, `&lt;1.0` encourages new topics, default `None` disables).
stream: Optional[bool] = False
# Whether to enable streaming output (return results token by token), default `False` (returns complete results at once).
stream_options: Optional[StreamOptions] = None
# Additional configurations for streaming output (such as chunk size, timeout, etc.), refer to the specific definition of `StreamOptions`.
temperature: Optional[float] = None
# Temperature coefficient, controlling generation randomness (`0.0` for deterministic generation, `&gt;1.0` for more randomness, default `None` uses model default).
top_p: Optional[float] = None
# Nucleus sampling threshold, only retaining tokens whose cumulative probability exceeds `top_p` (default `None` disables).
response_format: Optional[AnyResponseFormat] = None
# Specifies the output format (such as JSON, XML, etc.), requires passing a predefined format configuration object.
user: Optional[str] = None
# User identifier, used for tracking or distinguishing requests from different users (default `None` does not pass).
metadata: Optional[dict] = None
# Additional metadata, used for passing custom information (such as request ID, debug markers, etc.).
</code></pre>
<h3 id="additional-parameters-added-by-fastdeploy">Additional Parameters Added by FastDeploy</h3>
<blockquote>
<p>Note:
When sending requests using curl, the following parameters can be used directly;
When sending requests using openai.Client, these parameters need to be placed in the <code>extra_body</code> parameter, e.g. <code>extra_body={"chat_template_kwargs": {"enable_thinking":True}, "include_stop_str_in_output": True}</code>.</p>
</blockquote>
<p>The following sampling parameters are supported.</p>
<pre><code class="language-python">top_k: Optional[int] = None
# Limits the consideration to the top K tokens with the highest probability at each generation step, used to control randomness (default None means no limit).
min_p: Optional[float] = None
# Nucleus sampling threshold, only retaining tokens whose cumulative probability exceeds min_p (default None means disabled).
min_tokens: Optional[int] = None
# Forces a minimum number of tokens to be generated, avoiding premature truncation (default None means no limit).
include_stop_str_in_output: Optional[bool] = False
# Whether to include the stop string content in the output (default False, meaning output is truncated when a stop string is encountered).
bad_words: Optional[List[str]] = None
# List of forbidden words (e.g., sensitive words) that the model should avoid generating (default None means no restriction).
bad_words_token_ids: Optional[List[int]] = None
# List of forbidden token ids that the model should avoid generating (default None means no restriction).
repetition_penalty: Optional[float] = None
# Repetition penalty coefficient, reducing the probability of repeating already generated tokens (`&gt;1.0` suppresses repetition, `&lt;1.0` encourages repetition, default None means disabled).
</code></pre>
<p>The following extra parameters are supported:</p>
<pre><code class="language-python">chat_template_kwargs: Optional[dict] = None
# Additional parameters passed to the chat template, used for customizing dialogue formats (default None).
chat_template: Optional[str] = None
# Custom chat template will override the model's default chat template (default None).
reasoning_max_tokens: Optional[int] = None
# Maximum number of tokens to generate during reasoning (e.g., CoT, chain of thought) (default None means using global max_tokens).
structural_tag: Optional[str] = None
# Structural tag, used to mark specific structures of generated content (such as JSON, XML, etc., default None).
guided_json: Optional[Union[str, dict, BaseModel]] = None
# Guides the generation of content conforming to JSON structure, can be a JSON string, dictionary, or Pydantic model (default None).
guided_regex: Optional[str] = None
# Guides the generation of content conforming to regular expression rules (default None means no restriction).
guided_choice: Optional[List[str]] = None
# Guides the generation of content selected from a specified candidate list (default None means no restriction).
guided_grammar: Optional[str] = None
# Guides the generation of content conforming to grammar rules (such as BNF) (default None means no restriction).
return_token_ids: Optional[bool] = None
# Whether to return the token IDs of the generation results instead of text (default None means return text).
prompt_token_ids: Optional[List[int]] = None
# Directly passes the token ID list of the prompt, skipping the text encoding step (default None means using text input).
disable_chat_template: Optional[bool] = False
# Whether to disable chat template rendering, using raw input directly (default False means template is enabled).
temp_scaled_logprobs: Optional[bool] = False
# Whether to divide the logits by the temperature coefficient when calculating logprobs (default is False, meaning the logits are not divided by the temperature coefficient).
top_p_normalized_logprobs: Optional[bool] = False
# Whether to perform top-p normalization when calculating logprobs (default is False, indicating that top-p normalization is not performed).
</code></pre>
<h3 id="differences-in-return-fields">Differences in Return Fields</h3>
<p>Additional return fields added by FastDeploy:</p>
<ul>
<li><code>arrival_time</code>: Cumulative time consumed for all tokens</li>
<li><code>reasoning_content</code>: Return results of the chain of thought</li>
<li><code>prompt_token_ids</code>: List of token IDs for the input sequence</li>
<li><code>completion_token_ids</code>: List of token IDs for the output sequence</li>
</ul>
<p>Overview of return parameters:</p>
<pre><code class="language-python">
ChatCompletionResponse:
id: str
object: str = &quot;chat.completion&quot;
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
ChatCompletionResponseChoice:
index: int
message: ChatMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal[&quot;stop&quot;, &quot;length&quot;, &quot;tool_calls&quot;, &quot;recover_stop&quot;]]
ChatMessage:
role: str
content: str
reasoning_content: Optional[str] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
# Fields returned for streaming responses
ChatCompletionStreamResponse:
id: str
object: str = &quot;chat.completion.chunk&quot;
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
ChatCompletionResponseStreamChoice:
index: int
delta: DeltaMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal[&quot;stop&quot;, &quot;length&quot;, &quot;tool_calls&quot;]] = None
arrival_time: Optional[float] = None
DeltaMessage:
role: Optional[str] = None
content: Optional[str] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
</code></pre>
<h2 id="completion-api">Completion API</h2>
<p>The Completion API interface is mainly used for continuation scenarios, suitable for users who have customized context input and expect the model to only output continuation content; the inference process does not add other <code>prompt</code> concatenations.</p>
<h3 id="sending-user-requests_1">Sending User Requests</h3>
<p>Here is an example of sending a user request using the curl command:</p>
<pre><code class="language-bash">curl -X POST &quot;http://0.0.0.0:8188/v1/completions&quot; \
-H &quot;Content-Type: application/json&quot; \
-d '{
&quot;prompt&quot;: &quot;以下是一篇关于深圳文心公园的500字游记和赏析&quot;
}'
</code></pre>
<p>Here is an example of sending a user request using a Python script:</p>
<pre><code class="language-python">import openai
host = &quot;0.0.0.0&quot;
port = &quot;8170&quot;
client = openai.Client(base_url=f&quot;http://{host}:{port}/v1&quot;, api_key=&quot;null&quot;)
response = client.completions.create(
model=&quot;default&quot;,
prompt=&quot;以下是一篇关于深圳文心公园的500字游记和赏析&quot;,
stream=False,
)
print(response.choices[0].text)
</code></pre>
<p>For an explanation of the OpenAI protocol, refer to the <a href="https://platform.openai.com/docs/api-reference/completions/create">OpenAI Completion API</a></p>
<h3 id="compatible-openai-parameters_1">Compatible OpenAI Parameters</h3>
<pre><code class="language-python">model: Optional[str] = &quot;default&quot;
# Specifies the model name or version to use, defaulting to `&quot;default&quot;` (which may point to the base model).
prompt: Union[List[int], List[List[int]], str, List[str]]
# Input prompt, supporting multiple formats:
# - `str`: Plain text prompt (e.g., `&quot;Hello, how are you?&quot;`).
# - `List[str]`: Multiple text segments (e.g., `[&quot;User:&quot;, &quot;Hello!&quot;, &quot;Assistant:&quot;, &quot;Hi!&quot;]`).
# - `List[int]`: Directly passes a list of token IDs (e.g., `[123, 456]`).
# - `List[List[int]]`: List of multiple token ID lists (e.g., `[[123], [456, 789]]`).
best_of: Optional[int] = None
# Generates `best_of` candidate results and returns the highest-scoring one (requires `n=1`).
frequency_penalty: Optional[float] = None
# Frequency penalty coefficient, reducing the probability of generating the same token repeatedly (`&gt;1.0` suppresses repetition, `&lt;1.0` encourages repetition).
logprobs: Optional[int] = None
# Returns the log probabilities of each generated token, can specify the number of candidates to return.
max_tokens: Optional[int] = None
# Maximum number of tokens to generate (including input and output), no default limit (restricted by the model's context window).
presence_penalty: Optional[float] = None
# Presence penalty coefficient, reducing the probability of generating new topics (unseen topics) (`&gt;1.0` suppresses new topics, `&lt;1.0` encourages new topics).
</code></pre>
<h3 id="additional-parameters-added-by-fastdeploy_1">Additional Parameters Added by FastDeploy</h3>
<blockquote>
<p>Note:
When sending requests using curl, the following parameters can be used directly;
When sending requests using openai.Client, these parameters need to be placed in the <code>extra_body</code> parameter, e.g. <code>extra_body={"chat_template_kwargs": {"enable_thinking":True}, "include_stop_str_in_output": True}</code>.</p>
</blockquote>
<p>The following sampling parameters are supported.</p>
<pre><code class="language-python">top_k: Optional[int] = None
# Limits the consideration to the top K tokens with the highest probability at each generation step, used to control randomness (default None means no limit).
min_p: Optional[float] = None
# Nucleus sampling threshold, only retaining tokens whose cumulative probability exceeds min_p (default None means disabled).
min_tokens: Optional[int] = None
# Forces a minimum number of tokens to be generated, avoiding premature truncation (default None means no limit).
include_stop_str_in_output: Optional[bool] = False
# Whether to include the stop string content in the output (default False, meaning output is truncated when a stop string is encountered).
bad_words: Optional[List[str]] = None
# List of forbidden words (e.g., sensitive words) that the model should avoid generating (default None means no restriction).
bad_words_token_ids: Optional[List[int]] = None
# List of forbidden token ids that the model should avoid generating (default None means no restriction).
repetition_penalty: Optional[float] = None
# Repetition penalty coefficient, reducing the probability of repeating already generated tokens (`&gt;1.0` suppresses repetition, `&lt;1.0` encourages repetition, default None means disabled).
</code></pre>
<p>The following extra parameters are supported:</p>
<pre><code class="language-python">guided_json: Optional[Union[str, dict, BaseModel]] = None
# Guides the generation of content conforming to JSON structure, can be a JSON string, dictionary, or Pydantic model (default None).
guided_regex: Optional[str] = None
# Guides the generation of content conforming to regular expression rules (default None means no restriction).
guided_choice: Optional[List[str]] = None
# Guides the generation of content selected from a specified candidate list (default None means no restriction).
guided_grammar: Optional[str] = None
# Guides the generation of content conforming to grammar rules (such as BNF) (default None means no restriction).
return_token_ids: Optional[bool] = None
# Whether to return the token IDs of the generation results instead of text (default None means return text).
prompt_token_ids: Optional[List[int]] = None
# Directly passes the token ID list of the prompt, skipping the text encoding step (default None means using text input).
</code></pre>
<h3 id="overview-of-return-parameters">Overview of Return Parameters</h3>
<pre><code class="language-python">
CompletionResponse:
id: str
object: str = &quot;text_completion&quot;
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
CompletionResponseChoice:
index: int
text: str
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
arrival_time: Optional[float] = None
logprobs: Optional[int] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal[&quot;stop&quot;, &quot;length&quot;, &quot;tool_calls&quot;]]
# Fields returned for streaming responses
CompletionStreamResponse
id: str
object: str = &quot;text_completion&quot;
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
CompletionResponseStreamChoice:
index: int
text: str
arrival_time: float = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
logprobs: Optional[float] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal[&quot;stop&quot;, &quot;length&quot;, &quot;tool_calls&quot;]] = None
</code></pre>
</article>
</div>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
</main>
<footer class="md-footer">
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2025 Maintained by FastDeploy
</div>
Made with
<a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
Material for MkDocs
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "..", "features": [], "search": "../assets/javascripts/workers/search.973d3a69.min.js", "tags": null, "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}, "version": null}</script>
<script src="../assets/javascripts/bundle.f55a23d4.min.js"></script>
</body>
</html>