mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters
147 lines
4.1 KiB
Python
147 lines
4.1 KiB
Python
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||
parser.add_argument(
|
||
"--cls_model",
|
||
required=True,
|
||
help="Path of Classification model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_model",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_label_file",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--det_use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
parser.add_argument(
|
||
"--cls_use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
parser.add_argument(
|
||
"--rec_use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_det_option(args):
|
||
option = fd.RuntimeOption()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.det_use_trt:
|
||
option.use_trt_backend()
|
||
#det_max_side_len 默认为960,当用户更改DET模型的max_side_len参数时,请将此参数同时更改
|
||
det_max_side_len = 960
|
||
option.set_trt_input_shape("x", [1, 3, 50, 50], [1, 3, 640, 640],
|
||
[1, 3, det_max_side_len, det_max_side_len])
|
||
|
||
return option
|
||
|
||
|
||
def build_cls_option(args):
|
||
option = fd.RuntimeOption()
|
||
option.use_paddle_backend()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.cls_use_trt:
|
||
option.use_trt_backend()
|
||
option.set_trt_input_shape("x", [1, 3, 32, 100])
|
||
|
||
return option
|
||
|
||
|
||
def build_rec_option(args):
|
||
option = fd.RuntimeOption()
|
||
option.use_paddle_backend()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.rec_use_trt:
|
||
option.use_trt_backend()
|
||
option.set_trt_input_shape("x", [1, 3, 48, 10], [1, 3, 48, 320],
|
||
[1, 3, 48, 2000])
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
#Det模型
|
||
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
||
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
||
#Cls模型
|
||
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
|
||
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
|
||
#Rec模型
|
||
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
||
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
||
rec_label_file = args.rec_label_file
|
||
|
||
#默认
|
||
det_model = fd.vision.ocr.DBDetector()
|
||
cls_model = fd.vision.ocr.Classifier()
|
||
rec_model = fd.vision.ocr.Recognizer()
|
||
|
||
#模型初始化
|
||
if (len(args.det_model) != 0):
|
||
det_runtime_option = build_det_option(args)
|
||
det_model = fd.vision.ocr.DBDetector(
|
||
det_model_file, det_params_file, runtime_option=det_runtime_option)
|
||
|
||
if (len(args.cls_model) != 0):
|
||
cls_runtime_option = build_cls_option(args)
|
||
cls_model = fd.vision.ocr.Classifier(
|
||
cls_model_file, cls_params_file, runtime_option=cls_runtime_option)
|
||
|
||
if (len(args.rec_model) != 0):
|
||
rec_runtime_option = build_rec_option(args)
|
||
rec_model = fd.vision.ocr.Recognizer(
|
||
rec_model_file,
|
||
rec_params_file,
|
||
rec_label_file,
|
||
runtime_option=rec_runtime_option)
|
||
|
||
ppocrsysv2 = fd.vision.ocr.PPOCRSystemv2(
|
||
ocr_det=det_model._model,
|
||
ocr_cls=cls_model._model,
|
||
ocr_rec=rec_model._model)
|
||
|
||
# 预测图片准备
|
||
im = cv2.imread(args.image)
|
||
|
||
#预测并打印结果
|
||
result = ppocrsysv2.predict(im)
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_ppocr(im, result)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("Visualized result save in ./visualized_result.jpg")
|