Files
FastDeploy/custom_ops/gpu_ops/moe/fused_moe_op.h
Sunny-bot1 8224b21525 Refactor moe_topk_select op to use apply_norm_weight as a template parameter (#3345)
* Refactor moe_topk_select op to use apply_norm_weight as a template parameter

* update test
2025-08-13 08:44:16 +08:00

1191 lines
44 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// /*
// * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
// * AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
// *
// * Licensed under the Apache License, Version 2.0 (the "License");
// * you may not use this file except in compliance with the License.
// * You may obtain a copy of the License at
// *
// * http://www.apache.org/licenses/LICENSE-2.0
// *
// * Unless required by applicable law or agreed to in writing, software
// * distributed under the License is distributed on an "AS IS" BASIS,
// * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// * See the License for the specific language governing permissions and
// * limitations under the License.
// */
#pragma once
#include <cuda.h>
#include <cuda_fp16.h>
#include "moe/fused_moe_imp_op.h"
#include "moe/fused_moe_helper.h"
#include "cutlass/numeric_conversion.h"
// Ignore CUTLASS warnings about type punning
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wunused-function"
// #include "paddle/phi/backends/gpu/gpu_info.h"
#pragma GCC diagnostic pop
#include "helper.h"
#define WARP_SIZE 32
namespace phi {
struct GpuLaunchConfig {
dim3 block_per_grid;
dim3 thread_per_block;
};
inline GpuLaunchConfig Get1DBlocksAnd2DGridsMoe(const int64_t cols) {
int blocks_x = cols;
int blocks_y = 1;
int blocks_z = 1;
if (blocks_x > 1024) {
blocks_y = 256;
blocks_x = (blocks_x + blocks_y - 1) / blocks_y;
}
GpuLaunchConfig config;
config.block_per_grid.x = blocks_x;
config.block_per_grid.y = blocks_y;
config.block_per_grid.z = blocks_z;
return config;
}
constexpr static int FINALIZE_THREADS_PER_BLOCK = 256;
template <class T, class U>
__host__ __device__ constexpr static U arrayConvert(T const& input)
{
using Type = typename U::Element;
static_assert(T::kElements == U::kElements);
U u;
#pragma unroll
for (int i = 0; i < U::kElements; i++)
{
u[i] = static_cast<Type>(input[i]);
}
return u;
}
// ====================== Softmax things ===============================
// We have our own implementation of softmax here so we can support transposing
// the output in the softmax kernel when we extend this module to support
// expert-choice routing.
template <typename T, int TPB>
__launch_bounds__(TPB) __global__
void group_moe_softmax(const T* input,
T* output,
T* softmax_max_prob,
const int64_t num_cols,
const int64_t softmax_num_rows) {
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
__shared__ float normalizing_factor;
__shared__ float float_max;
__shared__ float max_out;
int globalIdx = blockIdx.x + blockIdx.y * gridDim.x;
if (globalIdx >= softmax_num_rows) {
return;
}
const int64_t thread_row_offset = globalIdx * num_cols;
cub::Sum sum;
float threadData(-FLT_MAX);
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
threadData = max(static_cast<float>(input[idx]), threadData);
}
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0) {
float_max = maxElem;
}
__syncthreads();
threadData = 0;
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
threadData += exp((static_cast<float>(input[idx]) - float_max));
}
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);
if (threadIdx.x == 0) {
normalizing_factor = 1.f / Z;
}
__syncthreads();
threadData = 0;
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
const float val =
exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
output[idx] = T(val);
threadData = max(static_cast<float>(T(val)), threadData);
}
const float maxOut = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0) {
// group max probs
max_out = 1.f / maxOut;
softmax_max_prob[globalIdx] = T(max_out);
}
__syncthreads();
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
// group softmax normalization
output[idx] = output[idx] * static_cast<T>(max_out);
}
}
template <typename T, int TPB>
__launch_bounds__(TPB) __global__ void moe_softmax(const T* input,
T* output,
const int64_t num_cols,
const int64_t num_rows) {
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
__shared__ float normalizing_factor;
__shared__ float float_max;
int globalIdx = blockIdx.x + blockIdx.y * gridDim.x;
if (globalIdx >= num_rows) {
return;
}
const int64_t thread_row_offset = globalIdx * num_cols;
cub::Sum sum;
float threadData(-FLT_MAX);
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
threadData = max(static_cast<float>(input[idx]), threadData);
}
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0) {
float_max = maxElem;
}
__syncthreads();
threadData = 0;
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
threadData += exp((static_cast<float>(input[idx]) - float_max));
}
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);
if (threadIdx.x == 0) {
normalizing_factor = 1.f / Z;
}
__syncthreads();
for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
const int idx = thread_row_offset + ii;
const float val =
exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
output[idx] = T(val);
}
}
template <typename T, int TPB, typename IdxT = int>
__launch_bounds__(TPB) __global__ void group_moe_top_k(const T* inputs_after_softmax,
T* output,
IdxT* indices,
int* source_rows,
T* softmax_max_prob,
const int64_t num_experts,
const int64_t k,
const int64_t num_rows) {
using cub_kvp = cub::KeyValuePair<int, T>;
using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
const int block_row = blockIdx.x + blockIdx.y * gridDim.x;
if (block_row >= num_rows) {
return;
}
const bool should_process_row = true;
const int thread_read_offset = block_row * num_experts;
for (int k_idx = 0; k_idx < k; ++k_idx) {
thread_kvp.key = 0;
thread_kvp.value = T(-1.f); // This is OK because inputs are probabilities
cub_kvp inp_kvp;
for (int expert = threadIdx.x; expert < num_experts; expert += TPB) {
const int idx = thread_read_offset + expert;
inp_kvp.key = expert;
inp_kvp.value = inputs_after_softmax[idx];
for (int prior_k = 0; prior_k < k_idx; ++prior_k) {
const IdxT prior_winning_expert = indices[k * block_row + prior_k];
if (prior_winning_expert == expert) {
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp =
BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0) {
const int idx = k * block_row + k_idx;
// restore normalized probes
output[idx] = result_kvp.value / T(softmax_max_prob[idx]);
indices[idx] = should_process_row ? result_kvp.key : num_experts;
source_rows[idx] = k_idx * num_rows + block_row;
}
__syncthreads();
}
}
template <typename T, int TPB, bool NormWeights = false, typename IdxT = int>
__launch_bounds__(TPB) __global__ void moe_top_k(const T* inputs_after_softmax,
const T* bias,
T* output,
IdxT* indices,
int* source_rows,
const int64_t num_experts,
const int64_t k,
const int64_t num_rows) {
using cub_kvp = cub::KeyValuePair<int, T>;
using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
const int block_row = blockIdx.x + blockIdx.y * gridDim.x;
if (block_row >= num_rows) {
return;
}
const bool should_process_row = true;
const int thread_read_offset = block_row * num_experts;
T weight_sum = static_cast<T>(0);
T* row_outputs = nullptr;
if constexpr (NormWeights){
extern __shared__ char smem[];
row_outputs = reinterpret_cast<T*>(smem);
}
for (int k_idx = 0; k_idx < k; ++k_idx) {
thread_kvp.key = 0;
thread_kvp.value = T(-1.f); // This is OK because inputs are probabilities
cub_kvp inp_kvp;
for (int expert = threadIdx.x; expert < num_experts; expert += TPB) {
const int idx = thread_read_offset + expert;
inp_kvp.key = expert;
inp_kvp.value = bias ? inputs_after_softmax[idx] + bias[expert] : inputs_after_softmax[idx] ;
for (int prior_k = 0; prior_k < k_idx; ++prior_k) {
const int prior_winning_expert = indices[k * block_row + prior_k];
if (prior_winning_expert == expert) {
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp =
BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0) {
const int idx = k * block_row + k_idx;
indices[idx] = should_process_row ? result_kvp.key : num_experts;
source_rows[idx] = k_idx * num_rows + block_row;
if constexpr (NormWeights){
T row_out = bias ? inputs_after_softmax[thread_read_offset + result_kvp.key]: result_kvp.value;
row_outputs[k_idx] = row_out;
weight_sum += row_out;
}
else{
output[idx] = bias ? inputs_after_softmax[thread_read_offset + result_kvp.key]: result_kvp.value;
}
}
__syncthreads();
}
if constexpr (NormWeights){
if (threadIdx.x < WARP_SIZE) {
weight_sum = __shfl_sync(0xffffffff, weight_sum, 0);
}
if (threadIdx.x < k) {
output[k * block_row + threadIdx.x] = row_outputs[threadIdx.x] / weight_sum;
}
}
}
template <typename T, int TPB, bool NormWeights = false, typename IdxT = int>
__launch_bounds__(TPB) __global__ void moe_softmax_top_k_fused(const T* input,
const T* bias,
T* output,
IdxT* indices,
int* source_rows,
const int64_t num_experts,
const int64_t k,
const int64_t num_rows) {
// softmax
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
__shared__ float normalizing_factor;
__shared__ float float_max;
int globalIdx = blockIdx.x + blockIdx.y * gridDim.x;
if (globalIdx >= num_rows) {
return;
}
const int64_t thread_row_offset = globalIdx * num_experts;
const int64_t idx = thread_row_offset+threadIdx.x;
cub::Sum sum;
float threadData = (threadIdx.x < num_experts) ? static_cast<float>(input[idx]) :(-FLT_MAX);
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0) {
float_max = maxElem;
}
__syncthreads();
float threadDataSub = threadData - float_max;
float threadDataExp = exp(threadDataSub);
const auto Z = BlockReduce(tmpStorage).Reduce(threadDataExp, sum);
if (threadIdx.x == 0) {
normalizing_factor = 1.f / Z;
}
__syncthreads();
T val = T(threadDataExp * normalizing_factor);
// top_k
using cub_kvp = cub::KeyValuePair<int, T>;
using BlockReduceP = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduceP::TempStorage tmpStorageP;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
T weight_sum = static_cast<T>(0);
T* row_outputs = nullptr;
if constexpr (NormWeights){
extern __shared__ char smem[];
row_outputs = reinterpret_cast<T*>(smem);
}
for (int k_idx = 0; k_idx < k; ++k_idx) {
thread_kvp.key = 0;
thread_kvp.value = T(-1.f); // This is OK because inputs are probabilities
if (threadIdx.x < num_experts) {
cub_kvp inp_kvp;
int expert = threadIdx.x;
inp_kvp.key = expert;
inp_kvp.value = bias ? val + bias[expert] : val;
for (int prior_k = 0; prior_k < k_idx; ++prior_k) {
const IdxT prior_winning_expert = indices[k * globalIdx + prior_k];
if (prior_winning_expert == expert) {
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp =
BlockReduceP(tmpStorageP).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0) {
const int cur_idx = k * globalIdx + k_idx;
indices[cur_idx] = result_kvp.key;
source_rows[cur_idx] = k_idx * num_rows + globalIdx;
if constexpr (NormWeights) {
T row_out = bias ? (result_kvp.value - bias[result_kvp.key]) : result_kvp.value;
row_outputs[k_idx] = row_out;
weight_sum += row_out;
}
else {
output[cur_idx] = bias ? (result_kvp.value - bias[result_kvp.key]) : result_kvp.value;
}
}
__syncthreads();
}
if constexpr (NormWeights) {
if (threadIdx.x < WARP_SIZE) {
weight_sum = __shfl_sync(0xffffffff, weight_sum, 0);
}
if (threadIdx.x < k) {
output[k * globalIdx + threadIdx.x] = row_outputs[threadIdx.x] / weight_sum;
}
}
}
inline __device__ unsigned int xorwow_moe(unsigned int &state) {
state ^= state >> 7;
state ^= state << 9;
state ^= state >> 13;
return state;
}
template <typename T, int TPB, typename IdxT = int>
__launch_bounds__(TPB) __global__ void moe_redundant_top_k_normed(const T* inputs_after_softmax,
const T* bias,
const int* expert_id_to_ep_rank_array,
const int* expert_in_rank_num_list,
int* tokens_per_expert_stats_list,
T* output,
IdxT* indices,
IdxT* indices_tmp,
int* source_rows,
const int64_t num_experts,
const int64_t k,
const int64_t num_rows,
const int redundant_ep_rank_num_plus_one) {
using cub_kvp = cub::KeyValuePair<int, T>;
using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
const int block_row = blockIdx.x + blockIdx.y * gridDim.x;
// unsigned int state = block_row + blockIdx.x * blockDim.x + *kernel_call_num;
unsigned int state = block_row + blockIdx.x * blockDim.x;
if (block_row >= num_rows) {
return;
}
const bool should_process_row = true;
const int thread_read_offset = block_row * num_experts;
T weight_sum = static_cast<T>(0);
extern __shared__ char smem[];
T* row_outputs = reinterpret_cast<T*>(smem);
for (int k_idx = 0; k_idx < k; ++k_idx) {
thread_kvp.key = 0;
thread_kvp.value = T(-1.f); // This is OK because inputs are probabilities
cub_kvp inp_kvp;
for (int expert = threadIdx.x; expert < num_experts; expert += TPB) {
const int idx = thread_read_offset + expert;
inp_kvp.key = expert;
inp_kvp.value = bias ? inputs_after_softmax[idx] + bias[expert] : inputs_after_softmax[idx] ;
for (int prior_k = 0; prior_k < k_idx; ++prior_k) {
const int prior_winning_expert = indices_tmp[k * block_row + prior_k];
if (prior_winning_expert == expert) {
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp =
BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0) {
const int idx = k * block_row + k_idx;
// output[idx] = bias ? inputs_after_softmax[thread_read_offset + result_kvp.key]: result_kvp.value;
source_rows[idx] = k_idx * num_rows + block_row;
int expert_topk = should_process_row ? result_kvp.key : num_experts;
// runduncy
int len = expert_in_rank_num_list[expert_topk];
int select = (int)xorwow_moe(state) % len;
int selected_rank = expert_id_to_ep_rank_array[expert_topk * redundant_ep_rank_num_plus_one + select];
indices[idx] = (IdxT)selected_rank;
indices_tmp[idx] = result_kvp.key;
atomicAdd(&tokens_per_expert_stats_list[result_kvp.key], 1);
T row_out = bias ? inputs_after_softmax[thread_read_offset + result_kvp.key]: result_kvp.value;
row_outputs[k_idx] = row_out;
weight_sum += row_out;
}
__syncthreads();
}
if (threadIdx.x < WARP_SIZE) {
weight_sum = __shfl_sync(0xffffffff, weight_sum, 0);
}
if (threadIdx.x < k) {
output[k * block_row + threadIdx.x] = row_outputs[threadIdx.x] / weight_sum;
}
}
// ====================== TopK softmax things ===============================
/*
A Top-K gating softmax written to exploit when the number of experts in the
MoE layers are a small power of 2. This allows us to cleanly share the rows
among the threads in a single warp and eliminate communication between warps
(so no need to use shared mem).
It fuses the softmax, max and argmax into a single kernel.
Limitations:
1) This implementation is intended for when the number of experts is a small
power of 2. 2) This implementation assumes k is small, but will work for any
k.
*/
template <typename T,
int VPT,
int NUM_EXPERTS,
int WARPS_PER_CTA,
int BYTES_PER_LDG,
typename IdxT = int>
__launch_bounds__(WARPS_PER_CTA * WARP_SIZE) __global__
void topk_gating_softmax(const T* input,
T* output,
const int64_t num_rows,
IdxT* indices,
int* source_rows,
const int64_t k) {
// We begin by enforcing compile time assertions and setting up compile time
// constants.
static_assert(VPT == (VPT & -VPT), "VPT must be power of 2");
static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS),
"NUM_EXPERTS must be power of 2");
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG),
"BYTES_PER_LDG must be power of 2");
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
// Number of bytes each thread pulls in per load
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(T);
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
// Restrictions based on previous section.
static_assert(
VPT % ELTS_PER_LDG == 0,
"The elements per thread must be a multiple of the elements per ldg");
static_assert(WARP_SIZE % THREADS_PER_ROW == 0,
"The threads per row must cleanly divide the threads per warp");
static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW),
"THREADS_PER_ROW must be power of 2");
static_assert(THREADS_PER_ROW <= WARP_SIZE,
"THREADS_PER_ROW can be at most warp size");
// We have NUM_EXPERTS elements per row. We specialize for small #experts
static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
// Restrictions for previous section.
static_assert(ELTS_PER_WARP % ELTS_PER_ROW == 0,
"The elts per row must cleanly divide the total elt per warp");
// ===================== From this point, we finally start computing run-time
// variables. ========================
// Compute CTA and warp rows. We pack multiple rows into a single warp, and a
// block contains WARPS_PER_CTA warps. This, each block processes a chunk of
// rows. We start by computing the start row for each block.
const int cta_base_row = blockIdx.x * ROWS_PER_CTA;
// Now, using the base row per thread block, we compute the base row per warp.
const int warp_base_row = cta_base_row + threadIdx.y * ROWS_PER_WARP;
// The threads in a warp are split into sub-groups that will work on a row.
// We compute row offset for each thread sub-group
const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
const int thread_row = warp_base_row + thread_row_in_warp;
// Threads with indices out of bounds should early exit here.
if (thread_row >= num_rows) return;
const bool should_process_row = true;
// We finally start setting up the read pointers for each thread. First, each
// thread jumps to the start of the row it will read.
const T* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
// Now, we compute the group each thread belong to in order to determine the
// first column to start loads.
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
const T* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
// Determine the pointer type to use to read in the data depending on the
// BYTES_PER_LDG template param. In theory, this can support all powers of 2
// up to 16.
using AccessType = cutlass::AlignedArray<T, ELTS_PER_LDG>;
// Finally, we pull in the data from global mem
cutlass::Array<T, VPT> row_chunk_input;
AccessType* row_chunk_vec_ptr =
reinterpret_cast<AccessType*>(&row_chunk_input);
const AccessType* vec_thread_read_ptr =
reinterpret_cast<const AccessType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
}
using ComputeType = float;
using Converter = cutlass::NumericArrayConverter<ComputeType, T, VPT>;
Converter compute_type_converter;
cutlass::Array<ComputeType, VPT> row_chunk =
compute_type_converter(row_chunk_input);
// First, we perform a max reduce within the thread. We can do the max in fp16
// safely (I think) and just convert to float afterwards for the exp + sum
// reduction.
ComputeType thread_max = row_chunk[0];
#pragma unroll
for (int ii = 1; ii < VPT; ++ii) {
thread_max = max(thread_max, row_chunk[ii]);
}
// Now, we find the max within the thread group and distribute among the
// threads. We use a butterfly reduce.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2) {
thread_max =
max(thread_max,
__shfl_xor_sync(0xFFFFFFFF, thread_max, mask, THREADS_PER_ROW));
}
// From this point, thread max in all the threads have the max within the row.
// Now, we subtract the max from each element in the thread and take the exp.
// We also compute the thread local sum.
float row_sum = 0;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii) {
row_chunk[ii] = expf(row_chunk[ii] - thread_max);
row_sum += row_chunk[ii];
}
// Now, we perform the sum reduce within each thread group. Similar to the max
// reduce, we use a bufferfly pattern.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2) {
row_sum += __shfl_xor_sync(0xFFFFFFFF, row_sum, mask, THREADS_PER_ROW);
}
// From this point, all threads have the max and the sum for their rows in the
// thread_max and thread_sum variables respectively. Finally, we can scale the
// rows for the softmax. Technically, for top-k gating we don't need to
// compute the entire softmax row. We can likely look at the maxes and only
// compute for the top-k values in the row. However, this kernel will likely
// not be a bottle neck and it seems better to closer match torch and find the
// argmax after computing the softmax.
const float reciprocal_row_sum = 1.f / row_sum;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii) {
row_chunk[ii] = row_chunk[ii] * reciprocal_row_sum;
}
// Now, softmax_res contains the softmax of the row chunk. Now, I want to find
// the topk elements in each row, along with the max index.
int start_col = first_elt_read_by_thread;
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
for (int k_idx = 0; k_idx < k; ++k_idx) {
// First, each thread does the local argmax
float max_val = row_chunk[0];
int expert = start_col;
#pragma unroll
for (int ldg = 0, col = start_col; ldg < LDG_PER_THREAD;
++ldg, col += COLS_PER_GROUP_LDG) {
#pragma unroll
for (int ii = 0; ii < ELTS_PER_LDG; ++ii) {
float val = row_chunk[ldg * ELTS_PER_LDG + ii];
// No check on the experts here since columns with the smallest index
// are processed first and only updated if > (not >=)
if (val > max_val) {
max_val = val;
expert = col + ii;
}
}
}
// Now, we perform the argmax reduce. We use the butterfly pattern so threads
// reach consensus about the max. This will be useful for K > 1 so that the
// threads can agree on "who" had the max value. That thread can then blank out
// their max with -inf and the warp can run more iterations...
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2) {
float other_max =
__shfl_xor_sync(0xFFFFFFFF, max_val, mask, THREADS_PER_ROW);
int other_expert =
__shfl_xor_sync(0xFFFFFFFF, expert, mask, THREADS_PER_ROW);
// We want lower indices to "win" in every thread so we break ties this
// way
if (other_max > max_val ||
(other_max == max_val && other_expert < expert)) {
max_val = other_max;
expert = other_expert;
}
}
// Write the max for this k iteration to global memory.
if (thread_group_idx == 0) {
// The lead thread from each sub-group will write out the final results to
// global memory. (This will be a single) thread per row of the
// input/output matrices.
const int idx = k * thread_row + k_idx;
output[idx] = T(max_val);
indices[idx] = should_process_row ? expert : NUM_EXPERTS;
source_rows[idx] = k_idx * num_rows + thread_row;
}
// Finally, we clear the value in the thread with the current max if there
// is another iteration to run.
if (k_idx + 1 < k) {
const int ldg_group_for_expert = expert / COLS_PER_GROUP_LDG;
const int thread_to_clear_in_group =
(expert / ELTS_PER_LDG) % THREADS_PER_ROW;
// Only the thread in the group which produced the max will reset the
// "winning" value to -inf.
if (thread_group_idx == thread_to_clear_in_group) {
const int offset_for_expert = expert % ELTS_PER_LDG;
// Safe to set to any negative value since row_chunk values must be
// between 0 and 1.
row_chunk[ldg_group_for_expert * ELTS_PER_LDG + offset_for_expert] =
ComputeType(-10000.f);
}
}
}
}
namespace detail {
// Constructs some constants needed to partition the work across threads at
// compile time.
template <typename T, int EXPERTS, int BYTES_PER_LDG>
struct TopkConstants {
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(T);
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 ||
EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0,
"");
static constexpr int VECs_PER_THREAD =
std::max(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
};
} // namespace detail
template <typename T, int EXPERTS, int WARPS_PER_TB, typename IdxT = int>
void topk_gating_softmax_launcher_helper(const T* input,
T* output,
IdxT* indices,
int* source_row,
const int64_t num_rows,
const int64_t num_experts,
const int64_t k,
cudaStream_t stream) {
static constexpr uint64_t MAX_BYTES_PER_LDG = 16;
static constexpr int BYTES_PER_LDG =
std::min(MAX_BYTES_PER_LDG, sizeof(T) * EXPERTS);
using Constants = detail::TopkConstants<T, EXPERTS, BYTES_PER_LDG>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
topk_gating_softmax<T, VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG>
<<<num_blocks, block_dim, 0, stream>>>(
input, output, num_rows, indices, source_row, k);
}
template <typename T, typename IdxT = int>
struct topk_gating_softmax_kernelLauncher{
static void run(const T* input,
const T* gating_correction_bias,
T* output,
T* softmax,
IdxT* indices,
int* source_row,
T* softmax_max_prob,
const int64_t num_rows,
const int64_t num_experts,
const int64_t k,
const bool group_moe,
cudaStream_t stream,
const bool topk_only_mode = false) {
if (topk_only_mode) {
static constexpr int TPB = 256;
const auto config_topk = Get1DBlocksAnd2DGridsMoe(num_rows);
moe_top_k<T, TPB><<<config_topk.block_per_grid, TPB, 0, stream>>>(
input, gating_correction_bias, output, indices, source_row, num_experts, k, num_rows);
return;
}
static constexpr int WARPS_PER_TB = 4;
#define LAUNCH_TOPK_GATING_SOFTMAX_HELPER(N) \
case N: { \
topk_gating_softmax_launcher_helper<T, N, WARPS_PER_TB>( \
input, output, indices, source_row, num_rows, num_experts, k, stream); \
break; \
}
int64_t tem_num_experts = num_experts;
if(gating_correction_bias != nullptr) tem_num_experts = 0;
switch (tem_num_experts) {
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(2)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(4)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(8)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(16)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(32)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(64)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(128)
LAUNCH_TOPK_GATING_SOFTMAX_HELPER(256)
default: {
static constexpr int TPB = 256;
if (group_moe) {
const int group_experts = num_experts / k;
const int softmax_num_rows = num_rows * k;
const auto config_softmax = Get1DBlocksAnd2DGridsMoe(softmax_num_rows);
group_moe_softmax<T, TPB>
<<<config_softmax.block_per_grid, TPB, 0, stream>>>(
input,
softmax,
softmax_max_prob,
group_experts,
softmax_num_rows);
const auto config_topk = Get1DBlocksAnd2DGridsMoe(num_rows);
group_moe_top_k<T, TPB>
<<<config_topk.block_per_grid, TPB, 0, stream>>>(softmax,
output,
indices,
source_row,
softmax_max_prob,
num_experts,
k,
num_rows);
} else {
const auto config_topk = Get1DBlocksAnd2DGridsMoe(num_rows);
moe_softmax<T, TPB><<<config_topk.block_per_grid, TPB, 0, stream>>>(
input, softmax, num_experts, num_rows);
moe_top_k<T, TPB>
<<<config_topk.block_per_grid, TPB, 0, stream>>>(softmax,
gating_correction_bias,
output,
indices,
source_row,
num_experts,
k,
num_rows);
}
}
}
}
};
// ========================== Permutation things
// =======================================
// Duplicated and permutes rows for MoE. In addition, reverse the permutation
// map to help with finalizing routing.
// "expanded_x_row" simply means that the number of values is num_rows x k. It
// is "expanded" since we will have to duplicate some rows in the input matrix
// to match the dimensions. Duplicates will always get routed to separate
// experts in the end.
// Note that the expanded_dest_row_to_expanded_source_row map referred to here
// has indices in the range (0, k*rows_in_input - 1). However, it is set up so
// that index 0, rows_in_input, 2*rows_in_input ... (k-1)*rows_in_input all map
// to row 0 in the original matrix. Thus, to know where to read in the source
// matrix, we simply take the modulus of the expanded index.
template <typename T, int VecSize, typename OutT=T>
__global__ void initialize_moe_routing_kernel(
const T* unpermuted_input,
OutT* permuted_output,
const int* expanded_dest_row_to_expanded_source_row,
const int *expert_idx_per_token,
const float *w4a8_in_scale,
int* expanded_source_row_to_expanded_dest_row,
const int64_t num_rows,
const int64_t active_rows,
const int64_t cols,
const int64_t num_rows_k) {
using LoadT = AlignedVector<T, VecSize>;
LoadT src_vec;
// Reverse permutation map.
// I do this so that later, we can use the source -> dest map to do the k-way
// reduction and unpermuting. I need the reverse map for that reduction to
// allow each threadblock to do 1 k-way reduce without atomics later in MoE. 1
// thread block will be responsible for all k summations.
const int expanded_dest_row = blockIdx.x + blockIdx.y * gridDim.x;
if (expanded_dest_row >= num_rows_k) return;
const int expanded_source_row =
expanded_dest_row_to_expanded_source_row[expanded_dest_row];
if (threadIdx.x == 0) {
expanded_source_row_to_expanded_dest_row[expanded_source_row] =
expanded_dest_row;
}
if (expanded_dest_row < active_rows) {
const int expert_idx = expert_idx_per_token[expanded_dest_row];
const float scale = w4a8_in_scale ? w4a8_in_scale[expert_idx] : -1;
const int source_row = expanded_source_row % num_rows;
const T* source_row_ptr = unpermuted_input + source_row * cols;
OutT *dest_row_ptr = permuted_output + expanded_dest_row * cols;
for (int tid = threadIdx.x * VecSize; tid < cols;
tid += blockDim.x * VecSize) {
// dest_row_ptr[tid] = source_row_ptr[tid];
Load<T, VecSize>(&source_row_ptr[tid], &src_vec);
if constexpr (std::is_same<OutT, int8_t>::value) {
using StoreT = AlignedVector<OutT, VecSize>;
StoreT dest_vec;
const float max_bound = 127.f;
const float min_bound = -127.f;
for (int j = 0; j < VecSize; j++) {
float quant_value =
max_bound * scale * static_cast<float>(src_vec[j]);
quant_value = quant_value > max_bound ? max_bound : quant_value;
quant_value = quant_value < min_bound ? min_bound : quant_value;
dest_vec[j] = static_cast<int8_t>(round(quant_value));
}
Store<OutT, VecSize>(dest_vec, &dest_row_ptr[tid]);
} else {
Store<T, VecSize>(src_vec, &dest_row_ptr[tid]);
}
}
}
}
template <typename T, typename OutT = T>
struct initialize_moe_routing_kernelLauncher{
static void run(
const T* unpermuted_input,
OutT* permuted_output,
const int* expanded_dest_row_to_expanded_source_row,
const int *expert_idx_per_token,
const float *w4a8_in_scale,
int* expanded_source_row_to_expanded_dest_row,
const int64_t num_rows,
const int64_t active_rows,
const int64_t cols,
const int64_t k,
cudaStream_t stream) {
const int threads = std::min(cols, int64_t(1024));
constexpr int max_pack_size = 16 / sizeof(T);
const auto config_initialize = Get1DBlocksAnd2DGridsMoe(num_rows * k);
if (cols % max_pack_size == 0) {
initialize_moe_routing_kernel<T, max_pack_size>
<<<config_initialize.block_per_grid, threads, 0, stream>>>(
unpermuted_input,
permuted_output,
expanded_dest_row_to_expanded_source_row,
expert_idx_per_token,
w4a8_in_scale,
expanded_source_row_to_expanded_dest_row,
num_rows,
k * active_rows,
cols,
num_rows * k);
} else {
initialize_moe_routing_kernel<T, 1>
<<<config_initialize.block_per_grid, threads, 0, stream>>>(
unpermuted_input,
permuted_output,
expanded_dest_row_to_expanded_source_row,
expert_idx_per_token,
w4a8_in_scale,
expanded_source_row_to_expanded_dest_row,
num_rows,
k * active_rows,
cols,
num_rows * k);
}
}
};
// ============================== Infer GEMM sizes
// =================================
__device__ inline int find_total_elts_leq_target(int* sorted_indices,
const int64_t arr_length,
const int64_t target) {
int64_t low = 0, high = arr_length - 1, target_location = -1;
while (low <= high) {
int64_t mid = (low + high) / 2;
if (sorted_indices[mid] > target) {
high = mid - 1;
} else {
low = mid + 1;
target_location = mid;
}
}
return target_location + 1;
}
void compute_total_rows_before_expert(int* sorted_indices,
const int64_t total_indices,
const int64_t num_experts,
int64_t* total_rows_before_expert,
cudaStream_t stream);
// Final kernel to unpermute and scale
// This kernel unpermutes the original data, does the k-way reduction and
// performs the final skip connection.
template <typename T, int RESIDUAL_NUM>
__global__ void finalize_moe_routing_kernel(
const T* expanded_permuted_rows,
T* reduced_unpermuted_output,
const T* bias,
const float* scales,
const int* expanded_source_row_to_expanded_dest_row,
const int* expert_for_source_row,
const int64_t cols,
const int64_t k,
const int64_t compute_bias,
const bool norm_topk_prob,
const float routed_scaling_factor,
const int64_t num_rows) {
const int original_row = blockIdx.x;
auto const offset = original_row * cols;
T* reduced_row_ptr = reduced_unpermuted_output + offset;
constexpr int64_t FINALIZE_ELEM_PER_THREAD
= 128 / cutlass::sizeof_bits<T>::value;
int64_t const start_offset = threadIdx.x;
int64_t const stride = FINALIZE_THREADS_PER_BLOCK;
int64_t const num_elems_in_col = cols / FINALIZE_ELEM_PER_THREAD;
using BiasElem = cutlass::Array<T, FINALIZE_ELEM_PER_THREAD>;
using InputElem = cutlass::Array<T, FINALIZE_ELEM_PER_THREAD>;
using OutputElem = cutlass::Array<T, FINALIZE_ELEM_PER_THREAD>;
using ComputeElem = cutlass::Array<float, FINALIZE_ELEM_PER_THREAD>;
using SharedOutputElem = cutlass::Array<T, FINALIZE_ELEM_PER_THREAD>;
auto const* bias_v = reinterpret_cast<BiasElem const*>(bias);
auto const* expanded_permuted_rows_v = reinterpret_cast<InputElem const*>(expanded_permuted_rows);
auto* reduced_row_ptr_v = reinterpret_cast<OutputElem*>(reduced_row_ptr);
#pragma unroll
for (int elem_index = start_offset; elem_index < num_elems_in_col; elem_index += stride)
{
ComputeElem thread_output;
thread_output.fill(0);
float row_rescale{0.f};
for (int k_idx = 0; k_idx < k; ++k_idx)
{
int64_t const expanded_original_row = original_row + k_idx * num_rows;
int64_t const expanded_permuted_row = expanded_source_row_to_expanded_dest_row[expanded_original_row];
int64_t const k_offset = original_row * k + k_idx;
const float row_scale = scales[k_offset];
row_rescale = row_rescale + row_scale;
auto const* expanded_permuted_rows_row_ptr
= expanded_permuted_rows_v + expanded_permuted_row * num_elems_in_col;
int const expert_idx = expert_for_source_row[k_offset];
auto const* bias_ptr = bias_v + expert_idx * num_elems_in_col;
ComputeElem bias_value;
if (bias)
{
bias_value = arrayConvert<BiasElem, ComputeElem>(bias_ptr[elem_index]);
}
else
{
bias_value.fill(0);
}
ComputeElem expert_result
= arrayConvert<InputElem, ComputeElem>(expanded_permuted_rows_row_ptr[elem_index]);
thread_output = thread_output + row_scale * (expert_result + bias_value);
}
for (auto& elem : thread_output)
{
elem = elem / (norm_topk_prob ? row_rescale : 1.0f) * routed_scaling_factor;
}
OutputElem output_elem = arrayConvert<ComputeElem, OutputElem>(thread_output);
reduced_row_ptr_v[elem_index] = output_elem;
}
}
template <typename T>
struct finalize_moe_routing_kernelLauncher{
static void run(
const T* expanded_permuted_rows,
T* reduced_unpermuted_output,
const T* bias,
const float* scales,
const int* expanded_source_row_to_expanded_dest_row,
const int* expert_for_source_row,
const int64_t num_rows,
const int64_t cols,
const int64_t k,
const int64_t compute_bias,
const bool norm_topk_prob,
const float routed_scaling_factor,
cudaStream_t stream) {
const int blocks = num_rows;
const int threads = FINALIZE_THREADS_PER_BLOCK;
finalize_moe_routing_kernel<T, 1>
<<<blocks, threads, 0, stream>>>(
expanded_permuted_rows,
reduced_unpermuted_output,
bias,
scales,
expanded_source_row_to_expanded_dest_row,
expert_for_source_row,
cols,
k,
compute_bias,
norm_topk_prob,
routed_scaling_factor,
num_rows);
}
};
} // namespace phi