mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/fastdeploy_runtime.h"
 | |
| #include "fastdeploy/utils/utils.h"
 | |
| #ifdef ENABLE_ORT_BACKEND
 | |
| #include "fastdeploy/backends/ort/ort_backend.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef ENABLE_TRT_BACKEND
 | |
| #include "fastdeploy/backends/tensorrt/trt_backend.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef ENABLE_PADDLE_BACKEND
 | |
| #include "fastdeploy/backends/paddle/paddle_backend.h"
 | |
| #endif
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| std::vector<Backend> GetAvailableBackends() {
 | |
|   std::vector<Backend> backends;
 | |
| #ifdef ENABLE_ORT_BACKEND
 | |
|   backends.push_back(Backend::ORT);
 | |
| #endif
 | |
| #ifdef ENABLE_TRT_BACKEND
 | |
|   backends.push_back(Backend::TRT);
 | |
| #endif
 | |
| #ifdef ENABLE_PADDLE_BACKEND
 | |
|   backends.push_back(Backend::PDINFER);
 | |
| #endif
 | |
|   return backends;
 | |
| }
 | |
| 
 | |
| bool IsBackendAvailable(const Backend& backend) {
 | |
|   std::vector<Backend> backends = GetAvailableBackends();
 | |
|   for (size_t i = 0; i < backends.size(); ++i) {
 | |
|     if (backend == backends[i]) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::string Str(const Backend& b) {
 | |
|   if (b == Backend::ORT) {
 | |
|     return "Backend::ORT";
 | |
|   } else if (b == Backend::TRT) {
 | |
|     return "Backend::TRT";
 | |
|   } else if (b == Backend::PDINFER) {
 | |
|     return "Backend::PDINFER";
 | |
|   }
 | |
|   return "UNKNOWN-Backend";
 | |
| }
 | |
| 
 | |
| std::string Str(const Frontend& f) {
 | |
|   if (f == Frontend::PADDLE) {
 | |
|     return "Frontend::PADDLE";
 | |
|   } else if (f == Frontend::ONNX) {
 | |
|     return "Frontend::ONNX";
 | |
|   }
 | |
|   return "UNKNOWN-Frontend";
 | |
| }
 | |
| 
 | |
| bool CheckModelFormat(const std::string& model_file,
 | |
|                       const Frontend& model_format) {
 | |
|   if (model_format == Frontend::PADDLE) {
 | |
|     if (model_file.size() < 8 ||
 | |
|         model_file.substr(model_file.size() - 8, 8) != ".pdmodel") {
 | |
|       FDERROR << "With model format of Frontend::PADDLE, the model file "
 | |
|                  "should ends with `.pdmodel`, but now it's "
 | |
|               << model_file << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   } else if (model_format == Frontend::ONNX) {
 | |
|     if (model_file.size() < 5 ||
 | |
|         model_file.substr(model_file.size() - 5, 5) != ".onnx") {
 | |
|       FDERROR << "With model format of Frontend::ONNX, the model file "
 | |
|                  "should ends with `.onnx`, but now it's "
 | |
|               << model_file << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     FDERROR << "Only support model format with frontend Frontend::PADDLE / "
 | |
|                "Frontend::ONNX."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Frontend GuessModelFormat(const std::string& model_file) {
 | |
|   if (model_file.size() > 8 &&
 | |
|       model_file.substr(model_file.size() - 8, 8) == ".pdmodel") {
 | |
|     FDLogger() << "Model Format: PaddlePaddle." << std::endl;
 | |
|     return Frontend::PADDLE;
 | |
|   } else if (model_file.size() > 5 &&
 | |
|              model_file.substr(model_file.size() - 5, 5) == ".onnx") {
 | |
|     FDLogger() << "Model Format: ONNX." << std::endl;
 | |
|     return Frontend::ONNX;
 | |
|   }
 | |
| 
 | |
|   FDERROR << "Cannot guess which model format you are using, please set "
 | |
|              "RuntimeOption::model_format manually."
 | |
|           << std::endl;
 | |
|   return Frontend::PADDLE;
 | |
| }
 | |
| 
 | |
| void RuntimeOption::SetModelPath(const std::string& model_path,
 | |
|                                  const std::string& params_path,
 | |
|                                  const std::string& _model_format) {
 | |
|   if (_model_format == "paddle") {
 | |
|     model_file = model_path;
 | |
|     params_file = params_path;
 | |
|     model_format = Frontend::PADDLE;
 | |
|   } else if (_model_format == "onnx") {
 | |
|     model_file = model_path;
 | |
|     model_format = Frontend::ONNX;
 | |
|   } else {
 | |
|     FDASSERT(false, "The model format only can be 'paddle' or 'onnx'.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeOption::UseGpu(int gpu_id) {
 | |
| #ifdef WITH_GPU
 | |
|   device = Device::GPU;
 | |
|   device_id = gpu_id;
 | |
| #else
 | |
|   FDWARNING << "The FastDeploy didn't compile with GPU, will force to use CPU."
 | |
|             << std::endl;
 | |
|   device = Device::CPU;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void RuntimeOption::UseCpu() { device = Device::CPU; }
 | |
| 
 | |
| void RuntimeOption::SetCpuThreadNum(int thread_num) {
 | |
|   FDASSERT(thread_num > 0, "The thread_num must be greater than 0.");
 | |
|   cpu_thread_num = thread_num;
 | |
| }
 | |
| 
 | |
| // use paddle inference backend
 | |
| void RuntimeOption::UsePaddleBackend() {
 | |
| #ifdef ENABLE_PADDLE_BACKEND
 | |
|   backend = Backend::PDINFER;
 | |
| #else
 | |
|   FDASSERT(false, "The FastDeploy didn't compile with Paddle Inference.");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // use onnxruntime backend
 | |
| void RuntimeOption::UseOrtBackend() {
 | |
| #ifdef ENABLE_ORT_BACKEND
 | |
|   backend = Backend::ORT;
 | |
| #else
 | |
|   FDASSERT(false, "The FastDeploy didn't compile with OrtBackend.");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void RuntimeOption::UseTrtBackend() {
 | |
| #ifdef ENABLE_TRT_BACKEND
 | |
|   backend = Backend::TRT;
 | |
| #else
 | |
|   FDASSERT(false, "The FastDeploy didn't compile with TrtBackend.");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void RuntimeOption::EnablePaddleMKLDNN() { pd_enable_mkldnn = true; }
 | |
| 
 | |
| void RuntimeOption::DisablePaddleMKLDNN() { pd_enable_mkldnn = false; }
 | |
| 
 | |
| void RuntimeOption::SetPaddleMKLDNNCacheSize(int size) {
 | |
|   FDASSERT(size > 0, "Parameter size must greater than 0.");
 | |
|   pd_mkldnn_cache_size = size;
 | |
| }
 | |
| 
 | |
| void RuntimeOption::SetTrtInputShape(const std::string& input_name,
 | |
|                                      const std::vector<int32_t>& min_shape,
 | |
|                                      const std::vector<int32_t>& opt_shape,
 | |
|                                      const std::vector<int32_t>& max_shape) {
 | |
|   trt_min_shape[input_name].clear();
 | |
|   trt_max_shape[input_name].clear();
 | |
|   trt_opt_shape[input_name].clear();
 | |
|   trt_min_shape[input_name].assign(min_shape.begin(), min_shape.end());
 | |
|   if (opt_shape.size() == 0) {
 | |
|     trt_opt_shape[input_name].assign(min_shape.begin(), min_shape.end());
 | |
|   } else {
 | |
|     trt_opt_shape[input_name].assign(opt_shape.begin(), opt_shape.end());
 | |
|   }
 | |
|   if (max_shape.size() == 0) {
 | |
|     trt_max_shape[input_name].assign(min_shape.begin(), min_shape.end());
 | |
|   } else {
 | |
|     trt_max_shape[input_name].assign(max_shape.begin(), max_shape.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeOption::EnableTrtFP16() { trt_enable_fp16 = true; }
 | |
| 
 | |
| void RuntimeOption::DisableTrtFP16() { trt_enable_fp16 = false; }
 | |
| 
 | |
| void RuntimeOption::SetTrtCacheFile(const std::string& cache_file_path) {
 | |
|   trt_serialize_file = cache_file_path;
 | |
| }
 | |
| 
 | |
| bool Runtime::Init(const RuntimeOption& _option) {
 | |
|   option = _option;
 | |
|   if (option.model_format == Frontend::AUTOREC) {
 | |
|     option.model_format = GuessModelFormat(_option.model_file);
 | |
|   }
 | |
|   if (option.backend == Backend::UNKNOWN) {
 | |
|     if (IsBackendAvailable(Backend::ORT)) {
 | |
|       option.backend = Backend::ORT;
 | |
|     } else if (IsBackendAvailable(Backend::PDINFER)) {
 | |
|       option.backend = Backend::PDINFER;
 | |
|     } else {
 | |
|       FDERROR << "Please define backend in RuntimeOption, current it's "
 | |
|                  "Backend::UNKNOWN."
 | |
|               << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   if (option.backend == Backend::ORT) {
 | |
|     FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
 | |
|              "Backend::TRT only supports Device::CPU/Device::GPU.");
 | |
|     CreateOrtBackend();
 | |
|   } else if (option.backend == Backend::TRT) {
 | |
|     FDASSERT(option.device == Device::GPU,
 | |
|              "Backend::TRT only supports Device::GPU.");
 | |
|     CreateTrtBackend();
 | |
|   } else if (option.backend == Backend::PDINFER) {
 | |
|     FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
 | |
|              "Backend::TRT only supports Device::CPU/Device::GPU.");
 | |
|     FDASSERT(
 | |
|         option.model_format == Frontend::PADDLE,
 | |
|         "Backend::PDINFER only supports model format of Frontend::PADDLE.");
 | |
|     CreatePaddleBackend();
 | |
|   } else {
 | |
|     FDERROR << "Runtime only support "
 | |
|                "Backend::ORT/Backend::TRT/Backend::PDINFER as backend now."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| TensorInfo Runtime::GetInputInfo(int index) {
 | |
|   return backend_->GetInputInfo(index);
 | |
| }
 | |
| 
 | |
| TensorInfo Runtime::GetOutputInfo(int index) {
 | |
|   return backend_->GetOutputInfo(index);
 | |
| }
 | |
| 
 | |
| bool Runtime::Infer(std::vector<FDTensor>& input_tensors,
 | |
|                     std::vector<FDTensor>* output_tensors) {
 | |
|   return backend_->Infer(input_tensors, output_tensors);
 | |
| }
 | |
| 
 | |
| void Runtime::CreatePaddleBackend() {
 | |
| #ifdef ENABLE_PADDLE_BACKEND
 | |
|   auto pd_option = PaddleBackendOption();
 | |
|   pd_option.enable_mkldnn = option.pd_enable_mkldnn;
 | |
|   pd_option.mkldnn_cache_size = option.pd_mkldnn_cache_size;
 | |
|   pd_option.use_gpu = (option.device == Device::GPU) ? true : false;
 | |
|   pd_option.gpu_id = option.device_id;
 | |
|   pd_option.cpu_thread_num = option.cpu_thread_num;
 | |
|   FDASSERT(option.model_format == Frontend::PADDLE,
 | |
|            "PaddleBackend only support model format of Frontend::PADDLE.");
 | |
|   backend_ = new PaddleBackend();
 | |
|   auto casted_backend = dynamic_cast<PaddleBackend*>(backend_);
 | |
|   FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file,
 | |
|                                           pd_option),
 | |
|            "Load model from Paddle failed while initliazing PaddleBackend.");
 | |
| #else
 | |
|   FDASSERT(false,
 | |
|            "PaddleBackend is not available, please compiled with "
 | |
|            "ENABLE_PADDLE_BACKEND=ON.");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void Runtime::CreateOrtBackend() {
 | |
| #ifdef ENABLE_ORT_BACKEND
 | |
|   auto ort_option = OrtBackendOption();
 | |
|   ort_option.graph_optimization_level = option.ort_graph_opt_level;
 | |
|   ort_option.intra_op_num_threads = option.cpu_thread_num;
 | |
|   ort_option.inter_op_num_threads = option.ort_inter_op_num_threads;
 | |
|   ort_option.execution_mode = option.ort_execution_mode;
 | |
|   ort_option.use_gpu = (option.device == Device::GPU) ? true : false;
 | |
|   ort_option.gpu_id = option.device_id;
 | |
| 
 | |
|   // TODO(jiangjiajun): inside usage, maybe remove this later
 | |
|   ort_option.remove_multiclass_nms_ = option.remove_multiclass_nms_;
 | |
|   ort_option.custom_op_info_ = option.custom_op_info_;
 | |
| 
 | |
|   FDASSERT(option.model_format == Frontend::PADDLE ||
 | |
|                option.model_format == Frontend::ONNX,
 | |
|            "OrtBackend only support model format of Frontend::PADDLE / "
 | |
|            "Frontend::ONNX.");
 | |
|   backend_ = new OrtBackend();
 | |
|   auto casted_backend = dynamic_cast<OrtBackend*>(backend_);
 | |
|   if (option.model_format == Frontend::ONNX) {
 | |
|     FDASSERT(casted_backend->InitFromOnnx(option.model_file, ort_option),
 | |
|              "Load model from ONNX failed while initliazing OrtBackend.");
 | |
|   } else {
 | |
|     FDASSERT(casted_backend->InitFromPaddle(option.model_file,
 | |
|                                             option.params_file, ort_option),
 | |
|              "Load model from Paddle failed while initliazing OrtBackend.");
 | |
|   }
 | |
| #else
 | |
|   FDASSERT(false,
 | |
|            "OrtBackend is not available, please compiled with "
 | |
|            "ENABLE_ORT_BACKEND=ON.");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void Runtime::CreateTrtBackend() {
 | |
| #ifdef ENABLE_TRT_BACKEND
 | |
|   auto trt_option = TrtBackendOption();
 | |
|   trt_option.gpu_id = option.device_id;
 | |
|   trt_option.enable_fp16 = option.trt_enable_fp16;
 | |
|   trt_option.enable_int8 = option.trt_enable_int8;
 | |
|   trt_option.max_batch_size = option.trt_max_batch_size;
 | |
|   trt_option.max_workspace_size = option.trt_max_workspace_size;
 | |
|   trt_option.max_shape = option.trt_max_shape;
 | |
|   trt_option.min_shape = option.trt_min_shape;
 | |
|   trt_option.opt_shape = option.trt_opt_shape;
 | |
|   trt_option.serialize_file = option.trt_serialize_file;
 | |
| 
 | |
|   // TODO(jiangjiajun): inside usage, maybe remove this later
 | |
|   trt_option.remove_multiclass_nms_ = option.remove_multiclass_nms_;
 | |
|   trt_option.custom_op_info_ = option.custom_op_info_;
 | |
| 
 | |
|   FDASSERT(option.model_format == Frontend::PADDLE ||
 | |
|                option.model_format == Frontend::ONNX,
 | |
|            "TrtBackend only support model format of Frontend::PADDLE / "
 | |
|            "Frontend::ONNX.");
 | |
|   backend_ = new TrtBackend();
 | |
|   auto casted_backend = dynamic_cast<TrtBackend*>(backend_);
 | |
|   if (option.model_format == Frontend::ONNX) {
 | |
|     FDASSERT(casted_backend->InitFromOnnx(option.model_file, trt_option),
 | |
|              "Load model from ONNX failed while initliazing TrtBackend.");
 | |
|   } else {
 | |
|     FDASSERT(casted_backend->InitFromPaddle(option.model_file,
 | |
|                                             option.params_file, trt_option),
 | |
|              "Load model from Paddle failed while initliazing TrtBackend.");
 | |
|   }
 | |
| #else
 | |
|   FDASSERT(false,
 | |
|            "TrtBackend is not available, please compiled with "
 | |
|            "ENABLE_TRT_BACKEND=ON.");
 | |
| #endif
 | |
| }
 | |
| }  // namespace fastdeploy
 | 
