Files
FastDeploy/tests/pooling/test_Qwen3-Embedding_serving.py
lizexu123 4ac6de9a3c
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Feature] support pooling model runner (#4590)
* support qwen3-embedding

* support qwen3-embedding-0.6b

* fix

* fix bug

* fix test_return_token_ids.py and update enable_thinking

* fix mtp dummy_run

* merge develop

* fix np.float32

* delete FD_DISABLE_CHUNKED_PREFILL and FD_USE_GET_SAVE_OUTPUT_V1

* delete and build_stream_transfer_data

* fix test_update_v1:

* fix

* fix

* update dummy_run post_process

* delete test_update_v1

* fix

* fix dummy_run

* fix model_path

* fix model_path

* fix dummy_run
2025-10-31 22:32:05 +08:00

275 lines
8.5 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import signal
import socket
import subprocess
import sys
import time
from typing import List
import numpy as np
import pytest
import requests
# Read ports from environment variables
FD_API_PORT = int(os.getenv("FD_API_PORT", 8189))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8134))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8234))
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8334))
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT, FD_CACHE_QUEUE_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""Check if a TCP port is open."""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""Kill processes listening on the given port."""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports():
"""Clean all ports in PORTS_TO_CLEAN."""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
time.sleep(2)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_embedding_server():
"""
Start embedding model API server for testing.
"""
print("Pre-test port cleanup...")
clean_ports()
os.environ["FD_DISABLE_CHUNKED_PREFILL"] = "1"
os.environ["FD_USE_GET_SAVE_OUTPUT_V1"] = "1"
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "torch", "Qwen3-Embedding-0.6B")
else:
model_path = "./Qwen3-Embedding-0.6B"
if not os.path.exists(model_path):
pytest.skip(f"Model path not found: {model_path}")
log_path = "embedding_server.log"
cmd = [
sys.executable,
"-m",
"fastdeploy.entrypoints.openai.api_server",
"--model",
model_path,
"--port",
str(FD_API_PORT),
"--tensor-parallel-size",
"2",
"--engine-worker-queue-port",
str(FD_ENGINE_QUEUE_PORT),
"--metrics-port",
str(FD_METRICS_PORT),
"--cache-queue-port",
str(FD_CACHE_QUEUE_PORT),
"--max-model-len",
"8192",
"--max-num-seqs",
"256",
"--runner",
"pooling",
]
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True,
)
# Wait for server to start (up to 480 seconds)
for _ in range(480):
if is_port_open("127.0.0.1", FD_API_PORT):
print(f"Embedding API server is up on port {FD_API_PORT}")
break
time.sleep(1)
else:
print("Embedding API server failed to start. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print(f"Failed to kill process group: {e}")
raise RuntimeError(f"Embedding API server did not start on port {FD_API_PORT}")
yield
print("\n===== Post-test embedding server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"Embedding API server (pid={process.pid}) terminated")
except Exception as e:
print(f"Failed to terminate embedding API server: {e}")
@pytest.fixture(scope="session")
def embedding_api_url():
"""Returns the API endpoint URL for embeddings."""
return f"http://0.0.0.0:{FD_API_PORT}/v1/embeddings"
@pytest.fixture
def headers():
"""Returns common HTTP request headers."""
return {"Content-Type": "application/json"}
# ==========================
# Test Cases
# ==========================
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [
{
"role": "user",
"content": "北京天安门在哪里?",
}
],
"temperature": 0.8,
"top_p": 0, # fix top_p to reduce randomness
"seed": 13, # fixed random seed
}
def save_embedding_baseline(embedding: List[float], baseline_file: str):
"""
Save embedding vector to baseline file.
"""
baseline_data = {"embedding": embedding, "dimension": len(embedding)}
with open(baseline_file, "w", encoding="utf-8") as f:
json.dump(baseline_data, f, indent=2)
print(f"Baseline saved to: {baseline_file}")
def compare_embeddings(embedding1: List[float], embedding2: List[float], threshold: float = 0.01) -> float:
"""
Compare two embedding vectors using mean absolute difference.
Returns:
mean_abs_diff: mean absolute difference between two embeddings
"""
arr1 = np.array(embedding1, dtype=np.float32)
arr2 = np.array(embedding2, dtype=np.float32)
# Mean absolute difference
mean_abs_diff = np.mean(np.abs(arr1 - arr2))
print(f"Mean Absolute Difference: {mean_abs_diff:.6f}")
return mean_abs_diff
def check_embedding_against_baseline(embedding: List[float], baseline_file: str, threshold: float = 0.01):
"""
Check embedding against baseline file.
Args:
embedding: Current embedding vector
baseline_file: Path to baseline file
threshold: Maximum allowed difference rate (1 - cosine_similarity)
"""
try:
with open(baseline_file, "r", encoding="utf-8") as f:
baseline_data = json.load(f)
baseline_embedding = baseline_data["embedding"]
except FileNotFoundError:
raise AssertionError(f"Baseline file not found: {baseline_file}")
if len(embedding) != len(baseline_embedding):
raise AssertionError(
f"Embedding dimension mismatch: current={len(embedding)}, baseline={len(baseline_embedding)}"
)
mean_abs_diff = compare_embeddings(embedding, baseline_embedding, threshold)
if mean_abs_diff >= threshold:
# Save current embedding for debugging
temp_file = f"{baseline_file}.current"
save_embedding_baseline(embedding, temp_file)
raise AssertionError(
f"Embedding differs from baseline by too much (mean_abs_diff={mean_abs_diff:.6f} >= {threshold}):\n"
f"Current embedding saved to: {temp_file}\n"
f"Please check the differences."
)
def test_single_text_embedding(embedding_api_url, headers):
"""Test embedding generation for a single text input."""
payload = {
"input": "北京天安门在哪里?",
"model": "Qwen3-Embedding-0.6B",
}
resp = requests.post(embedding_api_url, headers=headers, json=payload)
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
result = resp.json()
assert "data" in result, "Response missing 'data' field"
assert len(result["data"]) == 1, "Expected single embedding result"
embedding = result["data"][0]["embedding"]
assert isinstance(embedding, list), "Embedding should be a list"
assert len(embedding) > 0, "Embedding vector should not be empty"
assert all(isinstance(x, (int, float)) for x in embedding), "Embedding values should be numeric"
print(f"Single text embedding dimension: {len(embedding)}")
base_path = os.getenv("MODEL_PATH", "")
baseline_filename = "Qwen3-Embedding-0.6B-baseline.json"
if base_path:
baseline_file = os.path.join(base_path, "torch", baseline_filename)
else:
baseline_file = baseline_filename
if not os.path.exists(baseline_file):
print("Baseline file not found. Saving current embedding as baseline...")
save_embedding_baseline(embedding, baseline_file)
else:
print(f"Comparing with baseline: {baseline_file}")
check_embedding_against_baseline(embedding, baseline_file, threshold=0.01)