Files
FastDeploy/tests/operators/test_speculate_verify.py
GoldPancake 1f3ce65b58
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Feature] support mtp distribution equivalence verification (#4699)
2025-10-31 11:45:04 +08:00

417 lines
16 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
from typing import List
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import speculate_verify
def topp_sampling_kernel(candidate_ids, candidate_scores, curand_value, candidate_len, topp, tid=0):
"""
Python simulation version of the Top-p sampling function.
Parameters:
- candidate_ids: [candidate_len] int64 array, candidate tokens
- candidate_scores: [candidate_len] float32 array, corresponding probabilities
- curand_value: float, in the range [0, 1), simulating the GPU's curand_uniform
- candidate_len: int, number of candidates
- topp: float, Top-P truncation threshold
- tid: simulated thread ID, for debugging purposes only (optional)
Returns:
- The sampled token (int64)
"""
rand_top_p = curand_value * topp
sum_scores = 0.0
for i in range(candidate_len):
sum_scores += candidate_scores[i]
sum_scores += candidate_scores[i]
if rand_top_p <= sum_scores:
return candidate_ids[i]
return candidate_ids[0]
def speculate_verify_ref(
sampled_token_ids,
accept_tokens,
accept_num,
step_idx,
stop_flags,
seq_lens_encoder,
seq_lens_decoder,
draft_tokens,
seq_lens_this_time,
verify_tokens,
verify_scores,
max_dec_len,
end_tokens,
is_block_step,
output_cum_offsets,
actual_candidate_len,
actual_draft_token_nums,
topp,
max_seq_len,
verify_window,
enable_topp,
benchmark_mode,
accept_all_drafts,
):
def is_in_end(token, end_tokens, end_length):
return token in end_tokens[:end_length]
def is_in(candidate_list, token, length):
return token in candidate_list[:length]
bsz = accept_tokens.shape[0]
real_bsz = seq_lens_this_time.shape[0]
max_draft_tokens = draft_tokens.shape[1]
end_length = end_tokens.shape[0]
max_candidate_len = verify_tokens.shape[1]
use_topk = False
prefill_one_step_stop = False
# random
initial_seed = 0
infer_seed: List[int] = [initial_seed] * bsz
dev_curand_states: List[float] = []
for i in range(bsz):
current_seed = infer_seed[i]
# std::mt19937_64 engine(infer_seed[i]);
rng = random.Random(current_seed)
dev_curand_states.append(rng.random())
# flatten
accept_tokens_flat = accept_tokens.reshape(-1)
draft_tokens_flat = draft_tokens.reshape(-1)
verify_tokens_flat = verify_tokens.reshape(-1)
verify_scores_flat = verify_scores.reshape(-1)
for bid in range(real_bsz):
start_token_id = bid * max_seq_len - output_cum_offsets[bid]
accept_num_now = 1
stop_flag_now_int = 0
if not (is_block_step[bid] or bid >= real_bsz): # bid >= real_bsz reserved for consistency with gpu
if stop_flags[bid]:
stop_flag_now_int = 1
else:
verify_tokens_now = verify_tokens_flat[start_token_id * max_candidate_len :]
draft_tokens_now = draft_tokens_flat[bid * max_draft_tokens :]
actual_candidate_len_now = actual_candidate_len[start_token_id:]
i = 0
for loop_i in range(seq_lens_this_time[bid] - 1):
i = loop_i
if seq_lens_encoder[bid] != 0:
break
if use_topk:
if verify_tokens_now[i * max_candidate_len] == draft_tokens_now[i + 1]:
step_idx[bid] += 1
accept_token = draft_tokens_now[i + 1]
accept_tokens_flat[bid * max_draft_tokens + i] = accept_token
if is_in_end(accept_token, end_tokens, end_length) or step_idx[bid] >= max_dec_len[bid]:
stop_flags[bid] = True
stop_flag_now_int = 1
if step_idx[bid] >= max_dec_len[bid]:
accept_tokens_flat[bid * max_draft_tokens + i] = end_tokens[0]
break
else:
accept_num_now += 1
else:
break
else:
actual_candidate_len_value = min(actual_candidate_len_now[i], max_candidate_len)
verify_tokens_current_candidate_view = verify_tokens_now[
i * max_candidate_len : (i + 1) * max_candidate_len
]
if is_in(
verify_tokens_current_candidate_view,
draft_tokens_now[i + 1],
actual_candidate_len_value,
):
step_idx[bid] += 1
accept_token = draft_tokens_now[i + 1]
accept_tokens_flat[bid * max_draft_tokens + i] = accept_token
if is_in_end(accept_token, end_tokens, end_length) or step_idx[bid] >= max_dec_len[bid]:
stop_flags[bid] = True
stop_flag_now_int = 1
if step_idx[bid] >= max_dec_len[bid]:
accept_tokens_flat[bid * max_draft_tokens + i] = end_tokens[0]
break
else:
accept_num_now += 1
else:
# TopK verify
ii = i # Start from i
if (
max_candidate_len >= 2
and verify_tokens_now[ii * max_candidate_len + 1] == draft_tokens_now[ii + 1]
): # top-2
j = 0
ii += 1 # Start from ii next position
while j < verify_window and ii < seq_lens_this_time[bid] - 1:
if verify_tokens_now[ii * max_candidate_len] != draft_tokens_now[ii + 1]:
break
j += 1
ii += 1
if j >= verify_window: # accept all
accept_num_now += verify_window + 1
step_idx[bid] += verify_window + 1
for k_accepted_idx in range(i, ii):
accept_token = draft_tokens_now[k_accepted_idx + 1]
accept_tokens_flat[bid * max_draft_tokens + k_accepted_idx] = accept_token
if (
is_in_end(
accept_token,
end_tokens,
end_length,
)
or step_idx[bid] >= max_dec_len[bid]
):
stop_flags[bid] = True
stop_flag_now_int = 1
if step_idx[bid] >= max_dec_len[bid]:
accept_tokens_flat[bid * max_draft_tokens + k_accepted_idx] = (
end_tokens[0]
)
accept_num_now -= 1
step_idx[bid] -= 1
break
break # TopK finish
break # Jump main loop
if not stop_flag_now_int:
accept_token: int
verify_scores_now = verify_scores_flat[start_token_id * max_candidate_len :]
step_idx[bid] += 1
if enable_topp:
actual_candidate_len_value = min(actual_candidate_len_now[i], max_candidate_len)
verify_tokens_sampling_view = verify_tokens_now[
i * max_candidate_len : (i + 1) * max_candidate_len
]
verify_scores_sampling_view = verify_scores_now[
i * max_candidate_len : (i + 1) * max_candidate_len
]
accept_token = topp_sampling_kernel(
verify_tokens_sampling_view,
verify_scores_sampling_view,
dev_curand_states[i],
actual_candidate_len_value,
topp[bid],
bid,
)
else:
accept_token = int(verify_tokens_now[i * max_candidate_len])
accept_tokens_flat[bid * max_draft_tokens + i] = accept_token
if prefill_one_step_stop:
stop_flags[bid] = True
if is_in_end(accept_token, end_tokens, end_length) or step_idx[bid] >= max_dec_len[bid]:
stop_flags[bid] = True
stop_flag_now_int = 1
if step_idx[bid] >= max_dec_len[bid]:
accept_tokens_flat[bid * max_draft_tokens + i] = end_tokens[0]
accept_num[bid] = accept_num_now
return accept_tokens, accept_num, step_idx, stop_flags
def gen_speculate_verify_inputs(
real_bsz=123,
max_draft_tokens=16,
max_seq_len=256,
max_candidate_len=8,
verify_window=2,
end_length=4,
enable_topp=False,
seed=2025,
):
rng = np.random.default_rng(seed)
seq_lens_encoder = rng.integers(0, 3, size=real_bsz, dtype=np.int32)
seq_lens_decoder = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
draft_tokens = rng.integers(0, 1000, size=(real_bsz, max_draft_tokens), dtype=np.int64)
actual_draft_token_nums = rng.integers(1, max_draft_tokens + 1, size=real_bsz, dtype=np.int32)
seq_lens_this_time = rng.integers(1, max_seq_len + 1, size=real_bsz, dtype=np.int32)
sum_seq_this_time = int(np.sum(seq_lens_this_time))
sampled_token_ids = rng.integers(0, 1000, size=(sum_seq_this_time, 1), dtype=np.int64)
verify_tokens = rng.integers(0, 1000, size=(sum_seq_this_time, max_candidate_len), dtype=np.int64)
verify_scores = rng.random(size=(sum_seq_this_time, max_candidate_len)).astype(np.float32)
max_dec_len = rng.integers(16, 64, size=real_bsz, dtype=np.int64)
end_tokens = rng.integers(1, 1000, size=end_length, dtype=np.int64)
is_block_step = rng.integers(0, 2, size=real_bsz, dtype=bool)
# output_cum_offsets = np.zeros_like(seq_lens_this_time)
# output_cum_offsets[1:] = np.cumsum(seq_lens_this_time[:-1])
blank_lengths = max_seq_len - seq_lens_this_time
output_cum_offsets = np.concatenate([[0], np.cumsum(blank_lengths[:-1])])
output_cum_offsets = output_cum_offsets.astype("int32")
actual_candidate_len = rng.integers(1, max_candidate_len + 1, size=sum_seq_this_time, dtype=np.int32)
topp = (
rng.uniform(0.8, 1.0, size=real_bsz).astype(np.float32)
if enable_topp
else np.zeros(real_bsz, dtype=np.float32)
)
# Output(inplace)
accept_tokens = np.zeros((real_bsz, max_draft_tokens), dtype=np.int64)
accept_num = np.zeros(real_bsz, dtype=np.int32)
step_idx = np.zeros(real_bsz, dtype=np.int64)
stop_flags = np.zeros(real_bsz, dtype=bool)
return {
"sampled_token_ids": sampled_token_ids,
"accept_tokens": accept_tokens,
"accept_num": accept_num,
"step_idx": step_idx,
"stop_flags": stop_flags,
"seq_lens_encoder": seq_lens_encoder,
"seq_lens_decoder": seq_lens_decoder,
"draft_tokens": draft_tokens,
"seq_lens_this_time": seq_lens_this_time,
"verify_tokens": verify_tokens,
"verify_scores": verify_scores,
"max_dec_len": max_dec_len,
"end_tokens": end_tokens,
"is_block_step": is_block_step,
"output_cum_offsets": output_cum_offsets,
"actual_candidate_len": actual_candidate_len,
"actual_draft_token_nums": actual_draft_token_nums,
"topp": topp,
"max_seq_len": max_seq_len,
"verify_window": verify_window,
"enable_topp": enable_topp,
"benchmark_mode": False,
"accept_all_drafts": False,
}
test_configs = [
{
"real_bsz": 1,
"max_draft_tokens": 9,
"max_seq_len": 11,
"max_candidate_len": 4,
"verify_window": 2,
"end_length": 5,
"enable_topp": False,
"seed": 42,
},
{
"real_bsz": 33,
"max_draft_tokens": 5,
"max_seq_len": 10111,
"max_candidate_len": 5,
"verify_window": 2,
"end_length": 6,
"enable_topp": False,
"seed": 42,
},
{
"real_bsz": 6,
"max_draft_tokens": 4,
"max_seq_len": 10001,
"max_candidate_len": 6,
"verify_window": 2,
"end_length": 7,
"enable_topp": False,
"seed": 42,
},
{
"real_bsz": 7,
"max_draft_tokens": 3,
"max_seq_len": 777,
"max_candidate_len": 7,
"verify_window": 2,
"end_length": 5,
"enable_topp": False,
"seed": 42,
},
{
"real_bsz": 55,
"max_draft_tokens": 5,
"max_seq_len": 31,
"max_candidate_len": 9,
"verify_window": 2,
"end_length": 3,
"enable_topp": False,
"seed": 42,
},
]
class TestSpeculateVerify(unittest.TestCase):
def run_speculate_verify(
self,
real_bsz,
max_draft_tokens,
max_seq_len,
max_candidate_len,
verify_window,
end_length,
enable_topp,
seed,
):
inputs = gen_speculate_verify_inputs(
real_bsz=real_bsz,
max_draft_tokens=max_draft_tokens,
max_seq_len=max_seq_len,
max_candidate_len=max_candidate_len,
verify_window=verify_window,
end_length=end_length,
enable_topp=enable_topp,
seed=seed,
)
paddle_inputs = {k: v if isinstance(v, (int, bool)) else paddle.to_tensor(v) for k, v in inputs.items()}
inputs_gpu = list(paddle_inputs.values())
speculate_verify(*inputs_gpu)
out_gpu = [inputs_gpu[1], inputs_gpu[2], inputs_gpu[3], inputs_gpu[4]]
paddle_inputs_ref = {k: v if isinstance(v, (int, bool)) else paddle.to_tensor(v) for k, v in inputs.items()}
out_ref = speculate_verify_ref(**paddle_inputs_ref)
names = ["accept_tokens", "accept_num", "step_idx", "stop_flags"]
for _, pd_val, np_val in zip(names, out_gpu, out_ref):
np.testing.assert_allclose(pd_val.numpy(), np_val.numpy())
def test_speculate_verify(self):
for config in test_configs:
self.run_speculate_verify(**config)
if __name__ == "__main__":
unittest.main()