mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
417 lines
16 KiB
Python
417 lines
16 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
import unittest
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import speculate_verify
|
|
|
|
|
|
def topp_sampling_kernel(candidate_ids, candidate_scores, curand_value, candidate_len, topp, tid=0):
|
|
"""
|
|
Python simulation version of the Top-p sampling function.
|
|
|
|
Parameters:
|
|
- candidate_ids: [candidate_len] int64 array, candidate tokens
|
|
- candidate_scores: [candidate_len] float32 array, corresponding probabilities
|
|
- curand_value: float, in the range [0, 1), simulating the GPU's curand_uniform
|
|
- candidate_len: int, number of candidates
|
|
- topp: float, Top-P truncation threshold
|
|
- tid: simulated thread ID, for debugging purposes only (optional)
|
|
|
|
Returns:
|
|
- The sampled token (int64)
|
|
"""
|
|
rand_top_p = curand_value * topp
|
|
sum_scores = 0.0
|
|
for i in range(candidate_len):
|
|
sum_scores += candidate_scores[i]
|
|
sum_scores += candidate_scores[i]
|
|
if rand_top_p <= sum_scores:
|
|
return candidate_ids[i]
|
|
return candidate_ids[0]
|
|
|
|
|
|
def speculate_verify_ref(
|
|
sampled_token_ids,
|
|
accept_tokens,
|
|
accept_num,
|
|
step_idx,
|
|
stop_flags,
|
|
seq_lens_encoder,
|
|
seq_lens_decoder,
|
|
draft_tokens,
|
|
seq_lens_this_time,
|
|
verify_tokens,
|
|
verify_scores,
|
|
max_dec_len,
|
|
end_tokens,
|
|
is_block_step,
|
|
output_cum_offsets,
|
|
actual_candidate_len,
|
|
actual_draft_token_nums,
|
|
topp,
|
|
max_seq_len,
|
|
verify_window,
|
|
enable_topp,
|
|
benchmark_mode,
|
|
accept_all_drafts,
|
|
):
|
|
def is_in_end(token, end_tokens, end_length):
|
|
return token in end_tokens[:end_length]
|
|
|
|
def is_in(candidate_list, token, length):
|
|
return token in candidate_list[:length]
|
|
|
|
bsz = accept_tokens.shape[0]
|
|
real_bsz = seq_lens_this_time.shape[0]
|
|
max_draft_tokens = draft_tokens.shape[1]
|
|
end_length = end_tokens.shape[0]
|
|
max_candidate_len = verify_tokens.shape[1]
|
|
use_topk = False
|
|
prefill_one_step_stop = False
|
|
|
|
# random
|
|
initial_seed = 0
|
|
infer_seed: List[int] = [initial_seed] * bsz
|
|
dev_curand_states: List[float] = []
|
|
|
|
for i in range(bsz):
|
|
current_seed = infer_seed[i]
|
|
|
|
# std::mt19937_64 engine(infer_seed[i]);
|
|
rng = random.Random(current_seed)
|
|
|
|
dev_curand_states.append(rng.random())
|
|
|
|
# flatten
|
|
accept_tokens_flat = accept_tokens.reshape(-1)
|
|
draft_tokens_flat = draft_tokens.reshape(-1)
|
|
verify_tokens_flat = verify_tokens.reshape(-1)
|
|
verify_scores_flat = verify_scores.reshape(-1)
|
|
for bid in range(real_bsz):
|
|
start_token_id = bid * max_seq_len - output_cum_offsets[bid]
|
|
accept_num_now = 1
|
|
stop_flag_now_int = 0
|
|
|
|
if not (is_block_step[bid] or bid >= real_bsz): # bid >= real_bsz reserved for consistency with gpu
|
|
if stop_flags[bid]:
|
|
stop_flag_now_int = 1
|
|
else:
|
|
verify_tokens_now = verify_tokens_flat[start_token_id * max_candidate_len :]
|
|
draft_tokens_now = draft_tokens_flat[bid * max_draft_tokens :]
|
|
actual_candidate_len_now = actual_candidate_len[start_token_id:]
|
|
i = 0
|
|
for loop_i in range(seq_lens_this_time[bid] - 1):
|
|
i = loop_i
|
|
|
|
if seq_lens_encoder[bid] != 0:
|
|
break
|
|
|
|
if use_topk:
|
|
if verify_tokens_now[i * max_candidate_len] == draft_tokens_now[i + 1]:
|
|
step_idx[bid] += 1
|
|
accept_token = draft_tokens_now[i + 1]
|
|
accept_tokens_flat[bid * max_draft_tokens + i] = accept_token
|
|
if is_in_end(accept_token, end_tokens, end_length) or step_idx[bid] >= max_dec_len[bid]:
|
|
stop_flags[bid] = True
|
|
stop_flag_now_int = 1
|
|
if step_idx[bid] >= max_dec_len[bid]:
|
|
accept_tokens_flat[bid * max_draft_tokens + i] = end_tokens[0]
|
|
break
|
|
else:
|
|
accept_num_now += 1
|
|
else:
|
|
break
|
|
else:
|
|
actual_candidate_len_value = min(actual_candidate_len_now[i], max_candidate_len)
|
|
verify_tokens_current_candidate_view = verify_tokens_now[
|
|
i * max_candidate_len : (i + 1) * max_candidate_len
|
|
]
|
|
|
|
if is_in(
|
|
verify_tokens_current_candidate_view,
|
|
draft_tokens_now[i + 1],
|
|
actual_candidate_len_value,
|
|
):
|
|
step_idx[bid] += 1
|
|
accept_token = draft_tokens_now[i + 1]
|
|
accept_tokens_flat[bid * max_draft_tokens + i] = accept_token
|
|
|
|
if is_in_end(accept_token, end_tokens, end_length) or step_idx[bid] >= max_dec_len[bid]:
|
|
stop_flags[bid] = True
|
|
stop_flag_now_int = 1
|
|
if step_idx[bid] >= max_dec_len[bid]:
|
|
accept_tokens_flat[bid * max_draft_tokens + i] = end_tokens[0]
|
|
break
|
|
else:
|
|
accept_num_now += 1
|
|
else:
|
|
# TopK verify
|
|
ii = i # Start from i
|
|
if (
|
|
max_candidate_len >= 2
|
|
and verify_tokens_now[ii * max_candidate_len + 1] == draft_tokens_now[ii + 1]
|
|
): # top-2
|
|
j = 0
|
|
ii += 1 # Start from ii next position
|
|
while j < verify_window and ii < seq_lens_this_time[bid] - 1:
|
|
if verify_tokens_now[ii * max_candidate_len] != draft_tokens_now[ii + 1]:
|
|
break
|
|
j += 1
|
|
ii += 1
|
|
|
|
if j >= verify_window: # accept all
|
|
accept_num_now += verify_window + 1
|
|
step_idx[bid] += verify_window + 1
|
|
for k_accepted_idx in range(i, ii):
|
|
accept_token = draft_tokens_now[k_accepted_idx + 1]
|
|
accept_tokens_flat[bid * max_draft_tokens + k_accepted_idx] = accept_token
|
|
|
|
if (
|
|
is_in_end(
|
|
accept_token,
|
|
end_tokens,
|
|
end_length,
|
|
)
|
|
or step_idx[bid] >= max_dec_len[bid]
|
|
):
|
|
stop_flags[bid] = True
|
|
stop_flag_now_int = 1
|
|
if step_idx[bid] >= max_dec_len[bid]:
|
|
accept_tokens_flat[bid * max_draft_tokens + k_accepted_idx] = (
|
|
end_tokens[0]
|
|
)
|
|
accept_num_now -= 1
|
|
step_idx[bid] -= 1
|
|
break
|
|
break # TopK finish
|
|
break # Jump main loop
|
|
|
|
if not stop_flag_now_int:
|
|
accept_token: int
|
|
verify_scores_now = verify_scores_flat[start_token_id * max_candidate_len :]
|
|
|
|
step_idx[bid] += 1
|
|
|
|
if enable_topp:
|
|
actual_candidate_len_value = min(actual_candidate_len_now[i], max_candidate_len)
|
|
verify_tokens_sampling_view = verify_tokens_now[
|
|
i * max_candidate_len : (i + 1) * max_candidate_len
|
|
]
|
|
verify_scores_sampling_view = verify_scores_now[
|
|
i * max_candidate_len : (i + 1) * max_candidate_len
|
|
]
|
|
|
|
accept_token = topp_sampling_kernel(
|
|
verify_tokens_sampling_view,
|
|
verify_scores_sampling_view,
|
|
dev_curand_states[i],
|
|
actual_candidate_len_value,
|
|
topp[bid],
|
|
bid,
|
|
)
|
|
else:
|
|
accept_token = int(verify_tokens_now[i * max_candidate_len])
|
|
|
|
accept_tokens_flat[bid * max_draft_tokens + i] = accept_token
|
|
|
|
if prefill_one_step_stop:
|
|
stop_flags[bid] = True
|
|
|
|
if is_in_end(accept_token, end_tokens, end_length) or step_idx[bid] >= max_dec_len[bid]:
|
|
stop_flags[bid] = True
|
|
stop_flag_now_int = 1
|
|
if step_idx[bid] >= max_dec_len[bid]:
|
|
accept_tokens_flat[bid * max_draft_tokens + i] = end_tokens[0]
|
|
|
|
accept_num[bid] = accept_num_now
|
|
|
|
return accept_tokens, accept_num, step_idx, stop_flags
|
|
|
|
|
|
def gen_speculate_verify_inputs(
|
|
real_bsz=123,
|
|
max_draft_tokens=16,
|
|
max_seq_len=256,
|
|
max_candidate_len=8,
|
|
verify_window=2,
|
|
end_length=4,
|
|
enable_topp=False,
|
|
seed=2025,
|
|
):
|
|
rng = np.random.default_rng(seed)
|
|
|
|
seq_lens_encoder = rng.integers(0, 3, size=real_bsz, dtype=np.int32)
|
|
seq_lens_decoder = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
|
|
draft_tokens = rng.integers(0, 1000, size=(real_bsz, max_draft_tokens), dtype=np.int64)
|
|
actual_draft_token_nums = rng.integers(1, max_draft_tokens + 1, size=real_bsz, dtype=np.int32)
|
|
|
|
seq_lens_this_time = rng.integers(1, max_seq_len + 1, size=real_bsz, dtype=np.int32)
|
|
sum_seq_this_time = int(np.sum(seq_lens_this_time))
|
|
|
|
sampled_token_ids = rng.integers(0, 1000, size=(sum_seq_this_time, 1), dtype=np.int64)
|
|
verify_tokens = rng.integers(0, 1000, size=(sum_seq_this_time, max_candidate_len), dtype=np.int64)
|
|
verify_scores = rng.random(size=(sum_seq_this_time, max_candidate_len)).astype(np.float32)
|
|
|
|
max_dec_len = rng.integers(16, 64, size=real_bsz, dtype=np.int64)
|
|
end_tokens = rng.integers(1, 1000, size=end_length, dtype=np.int64)
|
|
is_block_step = rng.integers(0, 2, size=real_bsz, dtype=bool)
|
|
|
|
# output_cum_offsets = np.zeros_like(seq_lens_this_time)
|
|
# output_cum_offsets[1:] = np.cumsum(seq_lens_this_time[:-1])
|
|
blank_lengths = max_seq_len - seq_lens_this_time
|
|
output_cum_offsets = np.concatenate([[0], np.cumsum(blank_lengths[:-1])])
|
|
output_cum_offsets = output_cum_offsets.astype("int32")
|
|
actual_candidate_len = rng.integers(1, max_candidate_len + 1, size=sum_seq_this_time, dtype=np.int32)
|
|
|
|
topp = (
|
|
rng.uniform(0.8, 1.0, size=real_bsz).astype(np.float32)
|
|
if enable_topp
|
|
else np.zeros(real_bsz, dtype=np.float32)
|
|
)
|
|
|
|
# Output(inplace)
|
|
accept_tokens = np.zeros((real_bsz, max_draft_tokens), dtype=np.int64)
|
|
accept_num = np.zeros(real_bsz, dtype=np.int32)
|
|
step_idx = np.zeros(real_bsz, dtype=np.int64)
|
|
stop_flags = np.zeros(real_bsz, dtype=bool)
|
|
|
|
return {
|
|
"sampled_token_ids": sampled_token_ids,
|
|
"accept_tokens": accept_tokens,
|
|
"accept_num": accept_num,
|
|
"step_idx": step_idx,
|
|
"stop_flags": stop_flags,
|
|
"seq_lens_encoder": seq_lens_encoder,
|
|
"seq_lens_decoder": seq_lens_decoder,
|
|
"draft_tokens": draft_tokens,
|
|
"seq_lens_this_time": seq_lens_this_time,
|
|
"verify_tokens": verify_tokens,
|
|
"verify_scores": verify_scores,
|
|
"max_dec_len": max_dec_len,
|
|
"end_tokens": end_tokens,
|
|
"is_block_step": is_block_step,
|
|
"output_cum_offsets": output_cum_offsets,
|
|
"actual_candidate_len": actual_candidate_len,
|
|
"actual_draft_token_nums": actual_draft_token_nums,
|
|
"topp": topp,
|
|
"max_seq_len": max_seq_len,
|
|
"verify_window": verify_window,
|
|
"enable_topp": enable_topp,
|
|
"benchmark_mode": False,
|
|
"accept_all_drafts": False,
|
|
}
|
|
|
|
|
|
test_configs = [
|
|
{
|
|
"real_bsz": 1,
|
|
"max_draft_tokens": 9,
|
|
"max_seq_len": 11,
|
|
"max_candidate_len": 4,
|
|
"verify_window": 2,
|
|
"end_length": 5,
|
|
"enable_topp": False,
|
|
"seed": 42,
|
|
},
|
|
{
|
|
"real_bsz": 33,
|
|
"max_draft_tokens": 5,
|
|
"max_seq_len": 10111,
|
|
"max_candidate_len": 5,
|
|
"verify_window": 2,
|
|
"end_length": 6,
|
|
"enable_topp": False,
|
|
"seed": 42,
|
|
},
|
|
{
|
|
"real_bsz": 6,
|
|
"max_draft_tokens": 4,
|
|
"max_seq_len": 10001,
|
|
"max_candidate_len": 6,
|
|
"verify_window": 2,
|
|
"end_length": 7,
|
|
"enable_topp": False,
|
|
"seed": 42,
|
|
},
|
|
{
|
|
"real_bsz": 7,
|
|
"max_draft_tokens": 3,
|
|
"max_seq_len": 777,
|
|
"max_candidate_len": 7,
|
|
"verify_window": 2,
|
|
"end_length": 5,
|
|
"enable_topp": False,
|
|
"seed": 42,
|
|
},
|
|
{
|
|
"real_bsz": 55,
|
|
"max_draft_tokens": 5,
|
|
"max_seq_len": 31,
|
|
"max_candidate_len": 9,
|
|
"verify_window": 2,
|
|
"end_length": 3,
|
|
"enable_topp": False,
|
|
"seed": 42,
|
|
},
|
|
]
|
|
|
|
|
|
class TestSpeculateVerify(unittest.TestCase):
|
|
def run_speculate_verify(
|
|
self,
|
|
real_bsz,
|
|
max_draft_tokens,
|
|
max_seq_len,
|
|
max_candidate_len,
|
|
verify_window,
|
|
end_length,
|
|
enable_topp,
|
|
seed,
|
|
):
|
|
inputs = gen_speculate_verify_inputs(
|
|
real_bsz=real_bsz,
|
|
max_draft_tokens=max_draft_tokens,
|
|
max_seq_len=max_seq_len,
|
|
max_candidate_len=max_candidate_len,
|
|
verify_window=verify_window,
|
|
end_length=end_length,
|
|
enable_topp=enable_topp,
|
|
seed=seed,
|
|
)
|
|
paddle_inputs = {k: v if isinstance(v, (int, bool)) else paddle.to_tensor(v) for k, v in inputs.items()}
|
|
inputs_gpu = list(paddle_inputs.values())
|
|
speculate_verify(*inputs_gpu)
|
|
out_gpu = [inputs_gpu[1], inputs_gpu[2], inputs_gpu[3], inputs_gpu[4]]
|
|
|
|
paddle_inputs_ref = {k: v if isinstance(v, (int, bool)) else paddle.to_tensor(v) for k, v in inputs.items()}
|
|
out_ref = speculate_verify_ref(**paddle_inputs_ref)
|
|
|
|
names = ["accept_tokens", "accept_num", "step_idx", "stop_flags"]
|
|
for _, pd_val, np_val in zip(names, out_gpu, out_ref):
|
|
np.testing.assert_allclose(pd_val.numpy(), np_val.numpy())
|
|
|
|
def test_speculate_verify(self):
|
|
for config in test_configs:
|
|
self.run_speculate_verify(**config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|