mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
219 lines
7.3 KiB
Python
219 lines
7.3 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.device.cuda.graphs as graphs
|
|
|
|
from fastdeploy.config import (
|
|
CacheConfig,
|
|
FDConfig,
|
|
GraphOptimizationConfig,
|
|
LoadConfig,
|
|
ModelConfig,
|
|
ParallelConfig,
|
|
)
|
|
from fastdeploy.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear
|
|
from fastdeploy.model_executor.layers.quantization.weight_only import (
|
|
WINT4Config,
|
|
WINT8Config,
|
|
)
|
|
from fastdeploy.scheduler import SchedulerConfig
|
|
|
|
paddle.set_default_dtype("bfloat16")
|
|
paddle.seed(1024)
|
|
|
|
|
|
class WeightOnlyLinearWrapper(paddle.nn.Layer):
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
tp_size: int = 1,
|
|
prefix: str = "layer0",
|
|
quant_type: str = "wint4",
|
|
):
|
|
super().__init__()
|
|
self.model_config = model_config
|
|
|
|
self.tp_size = tp_size
|
|
self.prefix = prefix
|
|
self.fd_config = FDConfig(
|
|
model_config=self.model_config,
|
|
parallel_config=ParallelConfig({"tensor_parallel_size": self.tp_size}),
|
|
quant_config=WINT8Config({}) if quant_type == "wint8" else WINT4Config({}),
|
|
load_config=LoadConfig({}),
|
|
graph_opt_config=GraphOptimizationConfig({}),
|
|
scheduler_config=SchedulerConfig({}),
|
|
cache_config=CacheConfig({}),
|
|
)
|
|
|
|
self.fd_config.parallel_config.tp_group = None
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
self.fd_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
with_bias=False,
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.fd_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
input_size=self.fd_config.model_config.head_dim * self.fd_config.model_config.num_attention_heads,
|
|
output_size=self.fd_config.model_config.hidden_size,
|
|
)
|
|
|
|
qkv_proj_weight_shape = [
|
|
self.qkv_proj.input_size,
|
|
self.qkv_proj.output_size,
|
|
]
|
|
|
|
o_proj_weight_shape = [
|
|
self.o_proj.input_size,
|
|
self.o_proj.output_size,
|
|
]
|
|
|
|
state_dict = {}
|
|
state_dict[f"{prefix}.qkv_proj.weight"] = paddle.randn(qkv_proj_weight_shape, paddle.bfloat16)
|
|
state_dict[f"{prefix}.o_proj.weight"] = paddle.randn(o_proj_weight_shape, paddle.bfloat16)
|
|
self.qkv_proj.load_state_dict(state_dict)
|
|
self.o_proj.load_state_dict(state_dict)
|
|
|
|
self.input_size = self.o_proj.input_size
|
|
self.output_size = self.qkv_proj.output_size
|
|
|
|
def forward(self, x):
|
|
x = self.o_proj(x)
|
|
x = self.qkv_proj(x)
|
|
return x
|
|
|
|
|
|
class TestWeightOnlyLinear(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
self.model_name_or_path = None
|
|
self.model_config = self.build_model_config()
|
|
|
|
def build_model_config(self) -> ModelConfig:
|
|
model_path = os.getenv("TEST_MODEL_PATH")
|
|
if model_path:
|
|
model_cofig_path = model_path
|
|
else:
|
|
model_cofig_path = self.build_config_json()
|
|
return ModelConfig(
|
|
{
|
|
"model": model_cofig_path,
|
|
"max_model_len": 2048,
|
|
}
|
|
)
|
|
|
|
def build_config_json(self) -> str:
|
|
config_dict = {
|
|
"architectures": ["Qwen3MoeForCausalLM"],
|
|
"hidden_size": 2048,
|
|
"head_dim": 128,
|
|
"num_attention_heads": 32,
|
|
"num_key_value_heads": 4,
|
|
"dtype": "bfloat16",
|
|
}
|
|
|
|
tmp_dir = "./tmp_wint"
|
|
os.makedirs(tmp_dir, exist_ok=True)
|
|
with open(f"./{tmp_dir}/config.json", "w") as f:
|
|
json.dump(config_dict, f)
|
|
self.model_name_or_path = os.path.join(os.getcwd(), tmp_dir)
|
|
return self.model_name_or_path
|
|
|
|
def run_wint_linear(self, type="qkv_proj", quant_type="wint4"):
|
|
weight_only_linear = WeightOnlyLinearWrapper(self.model_config, quant_type=quant_type)
|
|
if type == "qkv_proj":
|
|
input_size = weight_only_linear.qkv_proj.input_size
|
|
mm = weight_only_linear.qkv_proj
|
|
elif type == "o_proj":
|
|
input_size = weight_only_linear.o_proj.input_size
|
|
mm = weight_only_linear.o_proj
|
|
else:
|
|
input_size = weight_only_linear.input_size
|
|
mm = weight_only_linear
|
|
|
|
print(type, quant_type)
|
|
print("{:<15} {:<40} {:<15}".format("Batch Size", "Last 5 Times (us)", "Last Time (us)"))
|
|
|
|
linear_cuda_graphs = [None] * 100
|
|
input = [None] * 100
|
|
for idx, bsz in enumerate([10, 20, 40, 50, 60, 100, 200, 1000, 2000]):
|
|
|
|
input[idx] = paddle.rand((bsz, input_size), dtype=paddle.bfloat16)
|
|
|
|
num_warmups = 10
|
|
for _ in range(num_warmups):
|
|
output = mm(input[idx])
|
|
|
|
num_layers = 10
|
|
linear_cuda_graphs[idx] = graphs.CUDAGraph()
|
|
linear_cuda_graphs[idx].capture_begin()
|
|
|
|
for _ in range(num_layers):
|
|
output = mm(input[idx])
|
|
|
|
linear_cuda_graphs[idx].capture_end()
|
|
|
|
num_tests = 10
|
|
start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
|
|
end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
|
|
for i in range(num_tests):
|
|
start_events[i].record()
|
|
|
|
linear_cuda_graphs[idx].replay()
|
|
|
|
end_events[i].record()
|
|
paddle.device.synchronize()
|
|
|
|
times = np.array([round(s.elapsed_time(e), 2) for s, e in zip(start_events, end_events)])[1:]
|
|
times = times * 1e3 / num_layers
|
|
last_5_times = times[-5:]
|
|
last_time = times[-1]
|
|
print("{:<15} {:<40} {:<15}".format(bsz, str(last_5_times), last_time))
|
|
return output
|
|
|
|
def test_qkv_linear(self):
|
|
print("===============Test QKV Quantized Linear Layer================")
|
|
for use_machete in ["0", "1"]:
|
|
os.environ["FD_USE_MACHETE"] = use_machete
|
|
self.run_wint_linear("qkv_proj")
|
|
|
|
def test_out_linear(self):
|
|
print("================Test OUT Quantized Linear Layer================")
|
|
for use_machete in ["0", "1"]:
|
|
os.environ["FD_USE_MACHETE"] = use_machete
|
|
self.run_wint_linear("o_proj")
|
|
|
|
def test_both_linear(self):
|
|
print("===========Test both OUT and QKV Quantized Linear Layer=========")
|
|
for use_machete in ["0", "1"]:
|
|
os.environ["FD_USE_MACHETE"] = use_machete
|
|
self.run_wint_linear("out_proj+qkv_proj")
|
|
|
|
def tearDown(self) -> None:
|
|
if self.model_name_or_path:
|
|
print("Remove tmp model config file")
|
|
shutil.rmtree(self.model_name_or_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|