mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
228 lines
9.0 KiB
Python
228 lines
9.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from unittest.mock import Mock
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.config import (
|
|
CacheConfig,
|
|
FDConfig,
|
|
GraphOptimizationConfig,
|
|
ParallelConfig,
|
|
SchedulerConfig,
|
|
SpeculativeConfig,
|
|
)
|
|
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
|
from fastdeploy.model_executor.layers.sample.sampler import (
|
|
MTPSampler,
|
|
SpeculativeSampler,
|
|
)
|
|
|
|
|
|
def _create_fake_logits(batch_size: int, vocab_size: int) -> paddle.Tensor:
|
|
fake_logits = paddle.rand(shape=[batch_size, vocab_size], dtype="float32")
|
|
return fake_logits
|
|
|
|
|
|
def _create_penalty_tensor(batch_size: int, penalty_value: float) -> paddle.Tensor:
|
|
return paddle.full(shape=[batch_size, 1], fill_value=penalty_value, dtype="float32")
|
|
|
|
|
|
def _create_tokens_tensor(
|
|
batch_size: int,
|
|
max_seq_len: int,
|
|
) -> paddle.Tensor:
|
|
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len], fill_value=-1, dtype="int64")
|
|
return pre_token_ids
|
|
|
|
|
|
def _create_default_sampling_metadata(
|
|
batch_size: int,
|
|
min_seq_len: int,
|
|
max_seq_len: int,
|
|
max_num_logprobs: int = None,
|
|
) -> SamplingMetadata:
|
|
|
|
fake_sampling_metadata = SamplingMetadata(
|
|
temperature=paddle.full(shape=[batch_size, 1], fill_value=0.9, dtype="float32"),
|
|
top_p=paddle.full(shape=[batch_size, 1], fill_value=0.7, dtype="float32"),
|
|
top_k=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int32"),
|
|
prompt_ids=paddle.full(shape=[batch_size, max_seq_len], fill_value=0, dtype="int64"),
|
|
prompt_lens=paddle.full(shape=[batch_size, 1], fill_value=5, dtype="int64"),
|
|
step_idx=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64"),
|
|
pre_token_ids=_create_tokens_tensor(batch_size, max_seq_len),
|
|
frequency_penalties=_create_penalty_tensor(batch_size, 0.0),
|
|
presence_penalties=_create_penalty_tensor(batch_size, 0.0),
|
|
repetition_penalties=_create_penalty_tensor(batch_size, 1.0),
|
|
min_dec_lens=paddle.full(shape=[batch_size, 1], fill_value=min_seq_len, dtype="int64"),
|
|
bad_words_token_ids=paddle.full(shape=[batch_size], fill_value=-1, dtype="int64"),
|
|
eos_token_ids=paddle.full(shape=[batch_size], fill_value=-2, dtype="int64"),
|
|
min_p=paddle.randn([batch_size]),
|
|
seed=paddle.to_tensor([[2025]]),
|
|
)
|
|
if max_num_logprobs is not None:
|
|
fake_sampling_metadata.max_num_logprobs = max_num_logprobs
|
|
return fake_sampling_metadata
|
|
|
|
|
|
def _create_fd_config(max_model_len):
|
|
model_config: Mock = Mock()
|
|
model_config.max_model_len = max_model_len
|
|
speculative_config = SpeculativeConfig({})
|
|
graph_opt_config = GraphOptimizationConfig({})
|
|
scheduler_config = SchedulerConfig({})
|
|
parallel_config = ParallelConfig({})
|
|
cache_config = CacheConfig({})
|
|
cache_config.cache_transfer_protocol = "rdma,ipc"
|
|
cache_config.pd_comm_port = "2334"
|
|
fd_config = FDConfig(
|
|
model_config=model_config,
|
|
speculative_config=speculative_config,
|
|
graph_opt_config=graph_opt_config,
|
|
scheduler_config=scheduler_config,
|
|
parallel_config=parallel_config,
|
|
cache_config=cache_config,
|
|
)
|
|
|
|
return fd_config
|
|
|
|
|
|
def _create_share_inputs(max_num_seqs, max_draft_token_num, max_model_len, vocab_size):
|
|
share_inputs = {}
|
|
share_inputs["seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 2, dtype="int32")
|
|
share_inputs["output_cum_offsets"] = paddle.concat(
|
|
[(max_model_len - share_inputs["seq_lens_this_time"][i]) * i for i in range(max_num_seqs)]
|
|
)
|
|
share_inputs["output_padding_offset"] = paddle.repeat_interleave(share_inputs["output_cum_offsets"], 2)
|
|
share_inputs["accept_tokens"] = paddle.full(
|
|
shape=[max_num_seqs, max_draft_token_num + 1], fill_value=0, dtype="int64"
|
|
)
|
|
share_inputs["accept_num"] = paddle.full(shape=[max_num_seqs], fill_value=1, dtype="int32")
|
|
share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 1, dtype="int64")
|
|
share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
|
|
share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
|
share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 2, dtype="int32")
|
|
share_inputs["draft_tokens"] = paddle.full(
|
|
shape=[max_num_seqs, max_draft_token_num + 1], fill_value=0, dtype="int64"
|
|
)
|
|
share_inputs["max_dec_len"] = paddle.full([max_num_seqs, 1], max_model_len, dtype="int64")
|
|
share_inputs["is_block_step"] = paddle.full([max_num_seqs], False, dtype="bool")
|
|
share_inputs["actual_draft_token_num"] = paddle.full(
|
|
shape=[max_num_seqs], fill_value=max_draft_token_num, dtype="int32"
|
|
)
|
|
|
|
share_inputs["batch_token_num"] = paddle.where(
|
|
share_inputs["seq_lens_encoder"] != 0,
|
|
paddle.ones_like(share_inputs["seq_lens_encoder"]),
|
|
share_inputs["seq_lens_this_time"],
|
|
).squeeze(1)
|
|
share_inputs["next_token_num"] = paddle.full(shape=[max_num_seqs], fill_value=0, dtype="int32")
|
|
share_inputs["cu_batch_token_offset"] = paddle.concat(
|
|
[paddle.to_tensor([0]), paddle.cumsum(share_inputs["accept_num"])]
|
|
).astype("int32")
|
|
share_inputs["cu_next_token_offset"] = paddle.full(shape=[max_num_seqs + 1], fill_value=0, dtype="int32")
|
|
share_inputs["substep"] = 0
|
|
share_inputs["draft_logits"] = paddle.full(
|
|
[max_num_seqs * (max_draft_token_num + 1), vocab_size], -1, dtype="float32"
|
|
)
|
|
|
|
return share_inputs
|
|
|
|
|
|
def test_speculative_sampler():
|
|
batch_size = 32
|
|
vocab_size = 1024
|
|
min_seq_len = 1
|
|
max_seq_len = 1024
|
|
max_model_len = 1024
|
|
max_draft_token_num = 1
|
|
|
|
fd_config = _create_fd_config(max_model_len)
|
|
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
|
|
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
|
|
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
|
|
|
|
sampler = SpeculativeSampler(fd_config)
|
|
sampler(logits, sampling_metadata, max_model_len, share_inputs)
|
|
|
|
|
|
def test_speculative_sampler_logprobs():
|
|
batch_size = 32
|
|
vocab_size = 1024
|
|
min_seq_len = 1
|
|
max_seq_len = 1024
|
|
max_model_len = 1024
|
|
max_draft_token_num = 1
|
|
|
|
fd_config = _create_fd_config(max_model_len)
|
|
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
|
|
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
|
|
sampling_metadata.share_inputs = share_inputs
|
|
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
|
|
|
|
logprobs_mode_list = ["raw_logprobs", "raw_logits"]
|
|
for logprobs_mode in logprobs_mode_list:
|
|
fd_config.model_config.logprobs_mode = logprobs_mode
|
|
sampler = SpeculativeSampler(fd_config)
|
|
sampler(logits, sampling_metadata, max_model_len, share_inputs)
|
|
|
|
|
|
def test_mtp_sampler():
|
|
batch_size = 32
|
|
vocab_size = 1024
|
|
min_seq_len = 1
|
|
max_seq_len = 1024
|
|
max_model_len = 1024
|
|
max_draft_token_num = 1
|
|
|
|
fd_config = _create_fd_config(max_model_len)
|
|
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
|
|
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
|
|
|
|
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
|
|
|
|
sampler = MTPSampler(fd_config)
|
|
sampler(logits, sampling_metadata, max_model_len, share_inputs)
|
|
|
|
|
|
def test_mtp_sampler_logprobs():
|
|
batch_size = 32
|
|
vocab_size = 1024
|
|
min_seq_len = 1
|
|
max_seq_len = 1024
|
|
max_model_len = 1024
|
|
max_draft_token_num = 1
|
|
|
|
fd_config = _create_fd_config(max_model_len)
|
|
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
|
|
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
|
|
sampling_metadata.share_inputs = share_inputs
|
|
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
|
|
|
|
logprobs_mode_list = ["raw_logprobs", "raw_logits"]
|
|
for logprobs_mode in logprobs_mode_list:
|
|
fd_config.model_config.logprobs_mode = logprobs_mode
|
|
sampler = MTPSampler(fd_config)
|
|
sampler(logits, sampling_metadata, max_model_len, share_inputs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_speculative_sampler()
|
|
test_speculative_sampler_logprobs()
|
|
test_mtp_sampler()
|
|
test_mtp_sampler_logprobs()
|