Files
FastDeploy/tests/layers/test_ffn.py
2025-10-31 12:13:59 +08:00

170 lines
5.7 KiB
Python

import json
import os
import shutil
import unittest
import numpy as np
import paddle
import paddle.device.cuda.graphs as graphs
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
)
from fastdeploy.model_executor.layers.quantization.block_wise_fp8 import (
BlockWiseFP8Config,
)
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_MLP
from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.worker.worker_process import init_distributed_environment
paddle.set_default_dtype("bfloat16")
class FFNWrapper(paddle.nn.Layer):
def __init__(self, model_config: ModelConfig):
super().__init__()
self.model_config = model_config
self.intermediate_size = 3584
self.hidden_size = self.model_config.hidden_size
self.prefix = "hahahha"
self.fd_config = FDConfig(
model_config=self.model_config,
parallel_config=ParallelConfig(
{
"tensor_parallel_size": 1,
"expert_parallel_size": 1,
"expert_parallel_rank": 0,
"data_parallel_size": 1,
}
),
quant_config=BlockWiseFP8Config(weight_block_size=[128, 128]),
# quant_config = WINT8Config({}),
scheduler_config=SchedulerConfig({}),
cache_config=CacheConfig({}),
graph_opt_config=GraphOptimizationConfig({}),
load_config=LoadConfig({}),
ips="0.0.0.0",
)
self.fd_config.parallel_config.tp_group = None
self.fd_config.parallel_config.tensor_parallel_rank = 0
self.fd_config.parallel_config.tensor_parallel_size = 1
self.ffn = Ernie4_5_MLP(
fd_config=self.fd_config,
intermediate_size=self.intermediate_size,
prefix=self.prefix,
)
up_gate_proj_weight_shape = [self.hidden_size, self.intermediate_size * 2]
down_proj_weight_shape = [self.intermediate_size, self.hidden_size]
up_gate_proj_weight = paddle.randn(up_gate_proj_weight_shape, paddle.bfloat16)
down_proj_weight = paddle.randn(down_proj_weight_shape, paddle.bfloat16)
state_dict = {
f"{self.prefix}.up_gate_proj.weight": up_gate_proj_weight,
f"{self.prefix}.down_proj.weight": down_proj_weight,
}
self.ffn.load_state_dict(state_dict)
class TestFusedMoE(unittest.TestCase):
def setUp(self) -> None:
self.architectures = ["Ernie4_5_MoeForCausalLM"]
self.hidden_size = 7168
self.moe_intermediate_size = 1
self.moe_num_experts = 1
self.moe_k = 1
self.hidden_act = "silu"
self.num_attention_heads = 64
self.model_config = self.build_model_config()
def build_model_config(self) -> ModelConfig:
model_name_or_path = self.build_config_json()
return ModelConfig(
{
"model": model_name_or_path,
"max_model_len": 2048,
}
)
def build_config_json(self) -> str:
config_dict = {
"architectures": self.architectures,
"hidden_size": self.hidden_size,
"moe_intermediate_size": self.moe_intermediate_size,
"moe_num_experts": self.moe_num_experts,
"moe_k": self.moe_k,
"hidden_act": self.hidden_act,
"num_attention_heads": self.num_attention_heads,
"dtype": "bfloat16",
}
tmp_dir = f"./tmpefef{paddle.distributed.get_rank()}"
os.makedirs(tmp_dir, exist_ok=True)
with open(f"./{tmp_dir}/config.json", "w") as f:
json.dump(config_dict, f)
self.model_name_or_path = os.path.join(os.getcwd(), tmp_dir)
return self.model_name_or_path
def test_ffn(self):
init_distributed_environment()
ffn = FFNWrapper(self.model_config)
# (ZKK): disable this test,
# CI machine does not support deepgemm blockwise_fp8, compilation error.
return
moe_cuda_graphs = [None] * 100
cache_hidden_states = [None] * 100
for idx, num_tokens in enumerate([10, 20, 40, 60, 80, 100, 128, 160, 192, 256, 512, 1024, 2048, 4096]):
cache_hidden_states[idx] = paddle.rand((num_tokens, self.model_config.hidden_size), dtype=paddle.bfloat16)
moe_cuda_graphs[idx] = graphs.CUDAGraph()
moe_cuda_graphs[idx].capture_begin()
num_layers = 80
for _ in range(num_layers):
out = ffn.ffn(cache_hidden_states[idx])
moe_cuda_graphs[idx].capture_end()
num_tests = 20
start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
for i in range(num_tests):
start_events[i].record()
moe_cuda_graphs[idx].replay()
end_events[i].record()
paddle.device.cuda.synchronize()
times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:]
print("num_tokens:", num_tokens)
print(times[-5:])
flops = num_layers * 2 * num_tokens * self.model_config.hidden_size * ffn.intermediate_size * 3
memory = num_layers * self.model_config.hidden_size * ffn.intermediate_size * 3
# memory += (num_layers * num_tokens * ffn.intermediate_size * 2)
print(round(flops / times[-1] / (1024**3), 1), "TFLOPS")
print(round(memory / times[-1] / (1024**3), 1), "TB/s")
shutil.rmtree(self.model_name_or_path)
return out
if __name__ == "__main__":
unittest.main()