mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* add unnitest for activation, native_paddle_backend, w4a8, w4afp8, platforms/utils * Remove activation function retrieval tests Removed tests for valid and unsupported activation function retrieval. * move w4a8, w4afp8 to quantization * fix code style
169 lines
5.5 KiB
Python
169 lines
5.5 KiB
Python
import unittest
|
|
from unittest.mock import patch
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
|
|
|
|
|
class DummyQuantConfig:
|
|
quant_round_type = 1
|
|
quant_max_bound = 127
|
|
quant_min_bound = -128
|
|
|
|
def name(self):
|
|
return "int8"
|
|
|
|
|
|
class DummyFDConfig:
|
|
def __init__(self):
|
|
self.quant_config = DummyQuantConfig()
|
|
self.graph_opt_config = type("GraphOptConfig", (), {"cudagraph_capture_sizes": []})()
|
|
|
|
|
|
class DummyPlatform:
|
|
def __init__(self, cuda=False, gcu=False, intel_hpu=False):
|
|
self._cuda = cuda
|
|
self._gcu = gcu
|
|
self._intel_hpu = intel_hpu
|
|
|
|
def is_cuda(self):
|
|
return self._cuda
|
|
|
|
def is_xpu(self):
|
|
return False
|
|
|
|
def is_iluvatar(self):
|
|
return False
|
|
|
|
def is_dcu(self):
|
|
return False
|
|
|
|
def is_maca(self):
|
|
return False
|
|
|
|
def is_gcu(self):
|
|
return self._gcu
|
|
|
|
def is_intel_hpu(self):
|
|
return self._intel_hpu
|
|
|
|
|
|
class DummyHelper:
|
|
def __init__(self, dtype="float16"):
|
|
self._dtype = dtype
|
|
|
|
def get_default_dtype(self):
|
|
return self._dtype
|
|
|
|
|
|
class TestSiluAndMul(unittest.TestCase):
|
|
# Test forward computation on CUDA platform
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.activation.current_platform", new_callable=lambda: DummyPlatform(cuda=True)
|
|
)
|
|
@patch("fastdeploy.model_executor.layers.activation.fused_bias_act", return_value=paddle.ones([2, 2]))
|
|
def test_forward_cuda(self, mock_fused, mock_platform):
|
|
fd_config = DummyFDConfig()
|
|
layer = SiluAndMul(fd_config)
|
|
x = paddle.ones([2, 2])
|
|
out = layer.forward(x)
|
|
self.assertTrue((out.numpy() == 1).all())
|
|
mock_fused.assert_called_once()
|
|
|
|
# Test forward computation on GCU platform
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.activation.current_platform", new_callable=lambda: DummyPlatform(gcu=True)
|
|
)
|
|
@patch("fastdeploy.model_executor.layers.activation.swiglu", return_value=paddle.ones([2, 2]))
|
|
def test_forward_gcu(self, mock_swiglu, mock_platform):
|
|
fd_config = DummyFDConfig()
|
|
bias = paddle.ones([2, 2])
|
|
layer = SiluAndMul(fd_config, bias=bias)
|
|
x = paddle.ones([2, 2])
|
|
out = layer.forward(x)
|
|
self.assertTrue((out.numpy() == 2).all())
|
|
|
|
# Test forward computation on Intel HPU platform
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.activation.current_platform",
|
|
new_callable=lambda: DummyPlatform(intel_hpu=True),
|
|
)
|
|
def test_forward_intel_hpu(self, mock_platform):
|
|
fd_config = DummyFDConfig()
|
|
layer = SiluAndMul(fd_config)
|
|
x = paddle.ones([2, 2])
|
|
out = layer.forward(x)
|
|
self.assertIsNone(out)
|
|
|
|
# Test behavior on unsupported platforms
|
|
@patch("fastdeploy.model_executor.layers.activation.current_platform", new_callable=lambda: DummyPlatform())
|
|
def test_unsupported_platform(self, mock_platform):
|
|
fd_config = DummyFDConfig()
|
|
with self.assertRaises(NotImplementedError):
|
|
SiluAndMul(fd_config)
|
|
|
|
# Test dtype branch handling
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.activation.current_platform", new_callable=lambda: DummyPlatform(cuda=True)
|
|
)
|
|
def test_dtype_branches(self, mock_platform):
|
|
fd_config = DummyFDConfig()
|
|
for dtype, expected in [("float16", "fp16"), ("bfloat16", "bf16"), ("float32", "fp32")]:
|
|
layer = SiluAndMul(fd_config)
|
|
layer._helper = DummyHelper(dtype)
|
|
layer._fuse_kernel_compute_dtype = {"float16": "fp16", "bfloat16": "bf16", "float32": "fp32"}[
|
|
layer._helper.get_default_dtype()
|
|
]
|
|
self.assertEqual(layer._fuse_kernel_compute_dtype, expected)
|
|
|
|
# Test invalid dtype handling
|
|
def test_dtype_invalid(self):
|
|
fd_config = DummyFDConfig()
|
|
layer = SiluAndMul(fd_config)
|
|
layer._helper = DummyHelper("int8")
|
|
with self.assertRaises(ValueError):
|
|
dtype = layer._helper.get_default_dtype()
|
|
if dtype not in ["float16", "bfloat16", "float32"]:
|
|
raise ValueError(f"Just support float32, float16 and bfloat16 as default dtype, but received {dtype}")
|
|
|
|
# Test fp8 quantization handling
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.activation.current_platform", new_callable=lambda: DummyPlatform(cuda=True)
|
|
)
|
|
def test_fp8_quant(self, mock_platform):
|
|
class DummyFp8Config:
|
|
quant_round_type = 1
|
|
quant_max_bound = 127
|
|
quant_min_bound = -128
|
|
|
|
def name(self):
|
|
return "fp8"
|
|
|
|
fd_config = DummyFDConfig()
|
|
fd_config.quant_config = DummyFp8Config()
|
|
layer = SiluAndMul(fd_config)
|
|
layer._helper = DummyHelper("float16")
|
|
if "fp8" in fd_config.quant_config.name():
|
|
layer.dequant_scales = None
|
|
layer.shift = None
|
|
layer.smooth = None
|
|
self.assertIsNone(layer.dequant_scales)
|
|
self.assertIsNone(layer.shift)
|
|
self.assertIsNone(layer.smooth)
|
|
|
|
# Test act_method mapping
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.activation.current_platform", new_callable=lambda: DummyPlatform(cuda=True)
|
|
)
|
|
def test_act_method_mapping(self, mock_platform):
|
|
fd_config = DummyFDConfig()
|
|
layer = SiluAndMul(fd_config, act_method="silu")
|
|
self.assertEqual(layer.act_method, "swiglu")
|
|
layer = SiluAndMul(fd_config, act_method="relu")
|
|
self.assertEqual(layer.act_method, "relu")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|