mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 129dda7809
			
		
	
	129dda7809
	
	
	
		
			
			* Add sort function * Add isfinite function * upgrade isinf isnan * Add Scalar to FDTensor * Add floor, ceil function * add cast functions * Update out_tmp * Update quantile * add gather scatter along axis * finish quantile function * Add quantile unittest * refresh code style for test source code * Add comments * Add full function * Add scalar to fd tensor * Add full unittest * Add functions headers * move fdtensor operators to fastdeploy namespace
		
			
				
	
	
		
			118 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/function/sort.h"
 | |
| #include "fastdeploy/function/eigen.h"
 | |
| #include "fastdeploy/function/transpose.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <numeric>
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| 
 | |
| template <typename T, typename Type>
 | |
| static void FullSort(Type input_height, Type input_width, int input_dim,
 | |
|                      const FDTensor* input, FDTensor* out, FDTensor* indices,
 | |
|                      bool descending) {
 | |
|   out->Allocate(input->Shape(), input->Dtype());
 | |
|   indices->Allocate(input->Shape(), TypeToDataType<Type>::dtype);
 | |
| 
 | |
|   T* t_out = reinterpret_cast<T*>(out->Data());
 | |
|   Type* t_indices = reinterpret_cast<Type*>(indices->Data());
 | |
| 
 | |
|   for (Type i = 0; i < input_height; ++i) {
 | |
|     std::vector<std::pair<T, Type>> col_vec;
 | |
|     col_vec.reserve(input_width);
 | |
|     if (input_dim == 1) {
 | |
|       auto e_input = EigenVector<T>::Flatten(*input);
 | |
|       for (Type j = 0; j < input_width; ++j) {
 | |
|         col_vec.push_back(std::pair<T, Type>(e_input(j), j));
 | |
|       }
 | |
|     } else {
 | |
|       auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
 | |
|       for (Type j = 0; j < input_width; ++j) {
 | |
|         col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
 | |
|       }
 | |
|     }
 | |
|     std::sort(col_vec.begin(), col_vec.end(),
 | |
|               [&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
 | |
|                 if (descending)
 | |
|                   return (std::isnan(static_cast<double>(l.first)) &&
 | |
|                           !std::isnan(static_cast<double>(r.first))) ||
 | |
|                          (l.first > r.first);
 | |
|                 else
 | |
|                   return (!std::isnan(static_cast<double>(l.first)) &&
 | |
|                           std::isnan(static_cast<double>(r.first))) ||
 | |
|                          (l.first < r.first);
 | |
|               });
 | |
| 
 | |
|     for (Type j = 0; j < input_width; ++j) {
 | |
|       t_out[i * input_width + j] = col_vec[j].first;
 | |
|       t_indices[i * input_width + j] = col_vec[j].second;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void SortKernel(const FDTensor& x, FDTensor* out, FDTensor* indices,
 | |
|                 FDDataType indices_type, bool descending, int axis) {
 | |
|   auto input_shape = x.Shape();
 | |
|   int rank = input_shape.size();
 | |
|   axis = (axis < 0) ? (rank + axis) : axis;
 | |
|   // Do full sort
 | |
|   if (axis == -1 || axis + 1 == rank) {
 | |
|     const int64_t input_width = input_shape[rank - 1];
 | |
|     const int64_t input_height = x.Numel() / input_width;
 | |
|     FD_VISIT_INT_TYPES(indices_type, "FullSort", ([&] {
 | |
|                          FullSort<T, data_t>(input_height, input_width, rank,
 | |
|                                              &x, out, indices, descending);
 | |
|                        }));
 | |
|   } else {
 | |
|     // If not full sort do transpose
 | |
|     std::vector<int64_t> trans;
 | |
|     for (int i = 0; i < axis; i++) {
 | |
|       trans.push_back(i);
 | |
|     }
 | |
|     trans.push_back(rank - 1);
 | |
|     for (int i = axis + 1; i < rank - 1; i++) {
 | |
|       trans.push_back(i);
 | |
|     }
 | |
|     trans.push_back(axis);
 | |
| 
 | |
|     FDTensor trans_inp;
 | |
|     Transpose(x, &trans_inp, trans);
 | |
|     const int64_t input_width = input_shape[axis];
 | |
|     const int64_t input_height = x.Numel() / input_width;
 | |
|     FD_VISIT_INT_TYPES(indices_type, "FullSort", ([&] {
 | |
|                          FullSort<T, data_t>(input_height, input_width, rank,
 | |
|                                              &trans_inp, out, indices,
 | |
|                                              descending);
 | |
|                        }));
 | |
|     // transpose back
 | |
|     Transpose(*out, out, trans);
 | |
|     Transpose(*indices, indices, trans);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sort(const FDTensor& x, FDTensor* out, FDTensor* indices, int axis,
 | |
|           bool descending, FDDataType indices_type) {
 | |
|   FD_VISIT_INT_FLOAT_TYPES(x.dtype, "SortKernel", ([&] {
 | |
|                              SortKernel<data_t>(x, out, indices, indices_type,
 | |
|                                                 descending, axis);
 | |
|                            }));
 | |
| }
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 |