mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			132 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "fastdeploy/function/eigen.h"
 | |
| #include "fastdeploy/function/elementwise.h"
 | |
| #include "fastdeploy/function/elementwise_base.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| 
 | |
| template <typename Functor> struct SameDimsElementwiseCompute {
 | |
|   void operator()(const FDTensor& x, const FDTensor& y, FDTensor* z) {
 | |
|     z->Allocate(x.Shape(), x.Dtype());
 | |
|     Functor()(x, y, z);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct SameDimsAddFunctor {
 | |
|   void operator()(const FDTensor& x, const FDTensor& y, FDTensor* z) {
 | |
|     const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|     auto eigen_x = EigenVector<T>::Flatten(x);
 | |
|     auto eigen_y = EigenVector<T>::Flatten(y);
 | |
|     auto eigen_z = EigenVector<T>::Flatten(*z);
 | |
|     eigen_z.device(dev) = eigen_x + eigen_y;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct SameDimsSubtractFunctor {
 | |
|   void operator()(const FDTensor& x, const FDTensor& y, FDTensor* z) {
 | |
|     const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|     auto eigen_x = EigenVector<T>::Flatten(x);
 | |
|     auto eigen_y = EigenVector<T>::Flatten(y);
 | |
|     auto eigen_z = EigenVector<T>::Flatten(*z);
 | |
|     eigen_z.device(dev) = eigen_x - eigen_y;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct SameDimsMultiplyFunctor {
 | |
|   void operator()(const FDTensor& x, const FDTensor& y, FDTensor* z) {
 | |
|     const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|     auto eigen_x = EigenVector<T>::Flatten(x);
 | |
|     auto eigen_y = EigenVector<T>::Flatten(y);
 | |
|     auto eigen_z = EigenVector<T>::Flatten(*z);
 | |
|     eigen_z.device(dev) = eigen_x * eigen_y;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct SameDimsDivideFunctor {
 | |
|   void operator()(const FDTensor& x, const FDTensor& y, FDTensor* z) {
 | |
|     const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|     auto eigen_x = EigenVector<T>::Flatten(x);
 | |
|     auto eigen_y = EigenVector<T>::Flatten(y);
 | |
|     auto eigen_z = EigenVector<T>::Flatten(*z);
 | |
|     eigen_z.device(dev) = eigen_x / eigen_y;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Add
 | |
| template <typename T> struct AddFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return a + b; }
 | |
| };
 | |
| template <typename T> struct InverseAddFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return b + a; }
 | |
| };
 | |
| 
 | |
| // Subtract
 | |
| template <typename T> struct SubtractFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return a - b; }
 | |
| };
 | |
| template <typename T> struct InverseSubtractFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return b - a; }
 | |
| };
 | |
| 
 | |
| // Multiply
 | |
| template <typename T> struct MultiplyFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return a * b; }
 | |
| };
 | |
| template <> struct MultiplyFunctor<bool> {
 | |
|   inline bool operator()(const bool a, const bool b) const { return a && b; }
 | |
| };
 | |
| template <typename T> struct InverseMultiplyFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return b * a; }
 | |
| };
 | |
| template <> struct InverseMultiplyFunctor<bool> {
 | |
|   inline bool operator()(const bool a, const bool b) const { return b && a; }
 | |
| };
 | |
| 
 | |
| // Divide
 | |
| #define DIV_ERROR_INFO                                                         \
 | |
|   "InvalidArgumentError: Integer division by zero encountered in "             \
 | |
|   "(floor) divide. Please check the input value."
 | |
| 
 | |
| template <typename T, typename Enable = void> struct DivideFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return a / b; }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct DivideFunctor<
 | |
|     T, typename std::enable_if<std::is_integral<T>::value>::type> {
 | |
|   inline T operator()(const T a, const T b) const {
 | |
|     // For int32/int64, need to check whether the divison is zero.
 | |
|     FDASSERT(b != 0, DIV_ERROR_INFO);
 | |
|     return a / b;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, typename Enable = void> struct InverseDivideFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return b / a; }
 | |
| };
 | |
| 
 | |
| // Maximum
 | |
| template <typename T> struct MaximumFunctor {
 | |
|   inline T operator()(const T a, const T b) const { return a > b ? a : b; }
 | |
| };
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 | 
