mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
129 lines
4.4 KiB
C++
129 lines
4.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/classifier.h"
|
|
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
Classifier::Classifier() {}
|
|
Classifier::Classifier(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
|
|
Backend::LITE};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
valid_kunlunxin_backends = {Backend::LITE};
|
|
valid_ascend_backends = {Backend::LITE};
|
|
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
|
|
valid_rknpu_backends = {Backend::RKNPU2};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool Classifier::Initialize() {
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<Classifier> Classifier::Clone() const {
|
|
std::unique_ptr<Classifier> clone_model =
|
|
utils::make_unique<Classifier>(Classifier(*this));
|
|
clone_model->SetRuntime(clone_model->CloneRuntime());
|
|
return clone_model;
|
|
}
|
|
|
|
bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label,
|
|
float* cls_score) {
|
|
std::vector<int32_t> cls_labels(1);
|
|
std::vector<float> cls_scores(1);
|
|
bool success = BatchPredict({img}, &cls_labels, &cls_scores);
|
|
if (!success) {
|
|
return success;
|
|
}
|
|
*cls_label = cls_labels[0];
|
|
*cls_score = cls_scores[0];
|
|
return true;
|
|
}
|
|
|
|
bool Classifier::Predict(const cv::Mat& img, vision::OCRResult* ocr_result) {
|
|
ocr_result->cls_labels.resize(1);
|
|
ocr_result->cls_scores.resize(1);
|
|
if (!Predict(img, &(ocr_result->cls_labels[0]),
|
|
&(ocr_result->cls_scores[0]))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
|
vision::OCRResult* ocr_result) {
|
|
return BatchPredict(images, &(ocr_result->cls_labels),
|
|
&(ocr_result->cls_scores));
|
|
}
|
|
|
|
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<int32_t>* cls_labels,
|
|
std::vector<float>* cls_scores) {
|
|
return BatchPredict(images, cls_labels, cls_scores, 0, images.size());
|
|
}
|
|
|
|
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<int32_t>* cls_labels,
|
|
std::vector<float>* cls_scores,
|
|
size_t start_index, size_t end_index) {
|
|
size_t total_size = images.size();
|
|
std::vector<FDMat> fd_images = WrapMat(images);
|
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index,
|
|
end_index)) {
|
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
|
return false;
|
|
}
|
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!postprocessor_.Run(reused_output_tensors_, cls_labels, cls_scores,
|
|
start_index, total_size)) {
|
|
FDERROR << "Failed to postprocess the inference cls_results by runtime."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|