mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/function/cumprod.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| 
 | |
| void GetCumprodDimInfo(const std::vector<int64_t>& dim, int cumprod_dim,
 | |
|                        size_t* outer_dim, size_t* mid_dim, size_t* inner_dim) {
 | |
|   int dim_size = dim.size();
 | |
|   FDASSERT(cumprod_dim >= -dim_size,
 | |
|            "The input dim of CumprodOp should be larger than the opposite "
 | |
|            "rank of input x which is %d. But received dim = %d",
 | |
|            -dim_size, cumprod_dim);
 | |
|   FDASSERT(cumprod_dim < dim_size,
 | |
|            "The input dim of CumprodOp should be smaller than the "
 | |
|            "rank of input x which is %d. But received dim = %d",
 | |
|            dim_size, cumprod_dim);
 | |
|   if (cumprod_dim < 0)
 | |
|     cumprod_dim += dim_size;
 | |
| 
 | |
|   *outer_dim = 1;
 | |
|   for (int i = 0; i < cumprod_dim; ++i) {
 | |
|     *outer_dim *= dim[i];
 | |
|   }
 | |
|   *mid_dim = dim[cumprod_dim];
 | |
|   *inner_dim = 1;
 | |
|   for (int i = cumprod_dim + 1; i < dim_size; ++i) {
 | |
|     *inner_dim *= dim[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void CumprodKernel(const FDTensor& x, FDTensor* out, int axis) {
 | |
|   auto* x_data = reinterpret_cast<const T*>(x.Data());
 | |
|   auto shape = x.Shape();
 | |
| 
 | |
|   size_t outer_dim = 1;
 | |
|   size_t mid_dim = 1;
 | |
|   size_t inner_dim = 1;
 | |
|   GetCumprodDimInfo(shape, axis, &outer_dim, &mid_dim, &inner_dim);
 | |
| 
 | |
|   out->Allocate(x.Shape(), x.Dtype());
 | |
|   auto* out_data = reinterpret_cast<T*>(out->Data());
 | |
| 
 | |
|   for (size_t i = 0; i < outer_dim; i++) {
 | |
|     for (size_t j = 0; j < mid_dim; j++) {
 | |
|       for (size_t k = 0; k < inner_dim; k++) {
 | |
|         size_t pos = i * mid_dim * inner_dim + j * inner_dim + k;
 | |
|         if (j == 0) {
 | |
|           out_data[pos] = x_data[pos];
 | |
|         } else {
 | |
|           out_data[pos] = out_data[pos - inner_dim] * x_data[pos];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Cumprod(const FDTensor& x, FDTensor* out, int axis) {
 | |
|   FD_VISIT_INT_FLOAT_TYPES(x.dtype, "CumprodKernel",
 | |
|                            ([&] { CumprodKernel<data_t>(x, out, axis); }));
 | |
| }
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 | 
