mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* online chat support logprobs * check xpu * check vl_gpu_model_runner and xpu_model_runner * get_worker() check platform
230 lines
5.0 KiB
Python
230 lines
5.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from dataclasses import dataclass
|
|
from typing import NamedTuple, Optional
|
|
|
|
import paddle
|
|
|
|
|
|
class LogprobsLists(NamedTuple):
|
|
"""
|
|
"""
|
|
|
|
# [num_reqs, max_num_logprobs + 1]
|
|
logprob_token_ids: list[list[int]]
|
|
# [num_reqs, max_num_logprobs + 1]
|
|
logprobs: list[list[float]]
|
|
# [num_reqs]
|
|
sampled_token_ranks: list[int]
|
|
|
|
def slice(self, start: int, end: int):
|
|
"""slice"""
|
|
return LogprobsLists(
|
|
self.logprob_token_ids[start:end],
|
|
self.logprobs[start:end],
|
|
self.sampled_token_ranks[start:end],
|
|
)
|
|
|
|
|
|
class LogprobsTensors(NamedTuple):
|
|
"""
|
|
"""
|
|
|
|
# [num_reqs, max_num_logprobs + 1]
|
|
logprob_token_ids: paddle.Tensor
|
|
# [num_reqs, max_num_logprobs + 1]
|
|
logprobs: paddle.Tensor
|
|
# [num_reqs]
|
|
selected_token_ranks: paddle.Tensor
|
|
|
|
def tolists(self):
|
|
"""Convert to lists."""
|
|
return LogprobsLists(
|
|
self.logprob_token_ids.tolist(),
|
|
self.logprobs.tolist(),
|
|
self.selected_token_ranks.tolist(),
|
|
)
|
|
|
|
@staticmethod
|
|
def empty_cpu(num_positions: int,
|
|
num_tokens_per_position: int) -> "LogprobsTensors":
|
|
"""Create empty LogprobsTensors on CPU."""
|
|
|
|
logprob_token_ids = paddle.empty(
|
|
[num_positions, num_tokens_per_position],
|
|
dtype=paddle.int64).cpu()
|
|
logprobs = paddle.empty_like(logprob_token_ids, dtype=paddle.float32)
|
|
selected_token_ranks = paddle.empty([num_positions],
|
|
dtype=paddle.int64).cpu()
|
|
return LogprobsTensors(
|
|
logprob_token_ids=logprob_token_ids,
|
|
logprobs=logprobs,
|
|
selected_token_ranks=selected_token_ranks,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class SamplerOutput:
|
|
"""
|
|
"""
|
|
|
|
# [num_reqs, max_num_generated_tokens]
|
|
# Different requests can have different number of generated tokens.
|
|
# All requests are padded to max_num_generated_tokens.
|
|
# PLACEHOLDER_TOKEN_ID (-1 by default) is used for padding.
|
|
sampled_token_ids: paddle.Tensor
|
|
logprobs_tensors: Optional[LogprobsTensors]
|
|
|
|
@dataclass
|
|
class ModelOutputData:
|
|
"""
|
|
OutputData by execute_model
|
|
"""
|
|
|
|
"""
|
|
Tokens generated in the previous step
|
|
"""
|
|
next_tokens: paddle.Tensor
|
|
|
|
"""
|
|
Flags indicating whether decoding should stop
|
|
"""
|
|
stop_flags: paddle.Tensor
|
|
|
|
"""
|
|
Index of the current decoding step
|
|
"""
|
|
step_idx: int
|
|
|
|
"""
|
|
Maximum decoding length
|
|
"""
|
|
max_dec_len: int
|
|
|
|
"""
|
|
Previous ids used for decoding
|
|
"""
|
|
pre_ids: paddle.Tensor
|
|
|
|
"""
|
|
Sequence lengths for this step
|
|
"""
|
|
seq_lens_this_time: paddle.Tensor
|
|
|
|
"""
|
|
Eos token ID
|
|
"""
|
|
eos_token_id: paddle.Tensor
|
|
|
|
"""
|
|
Indicates if stopping conditions should be ignored
|
|
"""
|
|
not_need_stop: bool
|
|
|
|
"""
|
|
Sequence lengths of the encoder
|
|
"""
|
|
seq_lens_encoder: paddle.Tensor
|
|
|
|
"""
|
|
Sequence lengths of the decoder
|
|
"""
|
|
seq_lens_decoder: paddle.Tensor
|
|
|
|
"""
|
|
Indicates if this is a blocking step
|
|
"""
|
|
is_block_step: bool
|
|
|
|
"""
|
|
The ID of the message queue.
|
|
"""
|
|
msg_queue_id: int
|
|
|
|
"""
|
|
The model parallel rank
|
|
"""
|
|
mp_rank: int
|
|
|
|
"""
|
|
Use EP parallel
|
|
"""
|
|
use_ep: bool
|
|
|
|
"""
|
|
input ids
|
|
"""
|
|
input_ids: paddle.Tensor
|
|
|
|
"""
|
|
stop nums for every sequence
|
|
"""
|
|
stop_nums: paddle.Tensor
|
|
|
|
"""
|
|
for speculative decoding
|
|
full hidden states before lm_head
|
|
"""
|
|
full_hidden_states: paddle.Tensor
|
|
|
|
"""
|
|
draft tokens for every sequence
|
|
"""
|
|
draft_tokens: paddle.Tensor
|
|
|
|
"""
|
|
draft token num for every sequence
|
|
"""
|
|
actual_draft_token_num: paddle.Tensor
|
|
|
|
"""
|
|
accepted tokens in current step
|
|
"""
|
|
accept_tokens: paddle.Tensor
|
|
|
|
"""
|
|
the number of accepted tokens in current step
|
|
"""
|
|
accept_num: paddle.Tensor
|
|
|
|
|
|
@dataclass
|
|
class ModelRunnerOutput:
|
|
"""
|
|
[WIP] ModelRunnerOutput is serialized and sent to the scheduler process.
|
|
"""
|
|
|
|
"""
|
|
[num_reqs]
|
|
"""
|
|
req_ids: list[str]
|
|
|
|
"""
|
|
req_id -> index
|
|
"""
|
|
req_id_to_index: dict[str, int]
|
|
|
|
"""
|
|
[num_reqs, num_generated_tokens]
|
|
"""
|
|
sampled_token_ids: list[list[int]]
|
|
|
|
"""
|
|
[num_reqs, num_spec_tokens]
|
|
"""
|
|
spec_token_ids: Optional[list[list[int]]]
|