mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			407 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			407 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/function/reduce.h"
 | |
| 
 | |
| #include <limits>
 | |
| #include <set>
 | |
| 
 | |
| #include "fastdeploy/function/eigen.h"
 | |
| #include "fastdeploy/function/reduce_functor.h"
 | |
| #include "fastdeploy/function/transpose.h"
 | |
| #include "fastdeploy/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| template <typename T, size_t D, size_t R_D, typename Functor>
 | |
| void ReduceFunctor(const FDTensor& input, FDTensor* output,
 | |
|                    const std::vector<int64_t>& dims, bool keep_dim) {
 | |
|   auto x = EigenTensor<T, D>::From(input);
 | |
|   auto x_rank = static_cast<int>(x.dimensions().size());
 | |
|   auto reduce_dim = Eigen::array<int, R_D>();
 | |
|   std::vector<int64_t> dims_ref = dims;
 | |
| 
 | |
|   auto out_dims = input.shape;
 | |
|   for (size_t i = 0; i < dims_ref.size(); ++i) {
 | |
|     if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
 | |
|     reduce_dim[i] = dims_ref[i];
 | |
|     out_dims[dims_ref[i]] = 1;
 | |
|   }
 | |
|   auto origin_output_dims = out_dims;
 | |
|   output->Allocate(origin_output_dims, TypeToDataType<T>::dtype);
 | |
|   // construct the squeezed output tensor
 | |
|   if (x_rank > 1) {
 | |
|     const int kDelFlag = -2;
 | |
|     for (size_t i = 0; i < dims_ref.size(); ++i) {
 | |
|       out_dims[dims_ref[i]] = kDelFlag;
 | |
|     }
 | |
|     out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
 | |
|                    out_dims.end());
 | |
|   }
 | |
| 
 | |
|   auto& place = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|   Functor functor;
 | |
|   if (D == 1) {
 | |
|     auto out = EigenScalar<T>::From(*output);
 | |
|     functor(place, &x, &out, reduce_dim);
 | |
|   } else {
 | |
|     auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
 | |
|     functor(place, &x, &out, reduce_dim);
 | |
|     if (!keep_dim) {
 | |
|       output->shape = std::move(out_dims);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define HANDLE_REDUCE_DIM(NDIM, RDIM)                                        \
 | |
|   if (ndim == NDIM && rdim == RDIM) {                                        \
 | |
|     ReduceFunctor<OutT, NDIM, RDIM, Functor>(input, output, dims, keep_dim); \
 | |
|   }
 | |
| 
 | |
| inline void GetShuffledDim(const std::vector<int64_t>& src_dims,
 | |
|                            std::vector<int64_t>* dst_dims,
 | |
|                            const std::vector<int64_t>& reduced_dims,
 | |
|                            std::vector<int64_t>* perm_axis) {
 | |
|   // check if it's a reduced dim
 | |
|   std::vector<bool> src_dims_check(src_dims.size(), false);
 | |
|   size_t src_size = src_dims.size();
 | |
|   size_t reduce_size = reduced_dims.size();
 | |
|   std::vector<int64_t> regular_reduced_dims = reduced_dims;
 | |
|   for (size_t i = 0; i < regular_reduced_dims.size(); i++) {
 | |
|     if (regular_reduced_dims[i] < 0) {
 | |
|       regular_reduced_dims[i] = src_size + regular_reduced_dims[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (size_t i = 0; i < reduce_size; ++i) {
 | |
|     dst_dims->at(src_size - reduce_size + i) =
 | |
|         src_dims[regular_reduced_dims[i]];
 | |
|     (*perm_axis)[src_size - reduce_size + i] = regular_reduced_dims[i];
 | |
|     src_dims_check[regular_reduced_dims[i]] = true;
 | |
|   }
 | |
| 
 | |
|   size_t offset = 0;
 | |
|   for (size_t i = 0; i < src_dims_check.size(); ++i) {
 | |
|     bool is_reduced = src_dims_check[i];
 | |
|     if (!is_reduced) {
 | |
|       (*perm_axis)[offset] = i;
 | |
|       dst_dims->at(offset++) = src_dims[i];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename OutT>
 | |
| void GetShuffledInput(const FDTensor& input, FDTensor* shuffled_input,
 | |
|                       const std::vector<int64_t>& dims) {
 | |
|   auto shuffled_dims = input.shape;
 | |
|   std::vector<int64_t> perm_axis(input.shape.size());
 | |
|   GetShuffledDim(input.shape, &shuffled_dims, dims, &perm_axis);
 | |
| 
 | |
|   shuffled_input->Allocate(shuffled_dims, input.dtype);
 | |
|   Transpose(input, shuffled_input, perm_axis);
 | |
| }
 | |
| 
 | |
| //////////////// HandleLargeDim
 | |
| template <typename OutT, typename Functor>
 | |
| void HandleLargeDim(const FDTensor& input, FDTensor* output,
 | |
|                     const std::vector<int64_t>& dims, bool keep_dim) {
 | |
|   auto out_dims = input.shape;
 | |
|   std::vector<int64_t> dims_ref = dims;
 | |
|   auto x_rank = input.shape.size();
 | |
|   for (size_t i = 0; i < dims_ref.size(); ++i) {
 | |
|     if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
 | |
|     out_dims[dims_ref[i]] = 1;
 | |
|   }
 | |
|   if (!keep_dim) {
 | |
|     const int kDelFlag = -2;
 | |
|     for (size_t i = 0; i < dims_ref.size(); ++i) {
 | |
|       out_dims[dims_ref[i]] = kDelFlag;
 | |
|     }
 | |
|     out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
 | |
|                    out_dims.end());
 | |
|   }
 | |
|   output->Allocate(out_dims, TypeToDataType<OutT>::dtype);
 | |
|   //  shuffle the reduced dim to the end
 | |
|   FDTensor shuffled_input;
 | |
|   GetShuffledInput<OutT>(input, &shuffled_input, dims);
 | |
| 
 | |
|   // transpose to 2D tensor whose shape is {unreduced, reduced}.
 | |
|   const int64_t unreduced = output->Numel();
 | |
|   const int64_t reduced = shuffled_input.Numel() / unreduced;
 | |
|   shuffled_input.Allocate({unreduced, reduced}, TypeToDataType<OutT>::dtype);
 | |
| 
 | |
|   output->shape = {unreduced};
 | |
|   ReduceFunctor<OutT, 2, 1, Functor>(shuffled_input, output, {1}, keep_dim);
 | |
|   output->shape = out_dims;
 | |
| }
 | |
| 
 | |
| ////////////// ReduceKernel
 | |
| 
 | |
| template <typename OutT, typename Functor>
 | |
| void ReduceKernelImpl(const FDTensor& input, FDTensor* output,
 | |
|                       const std::vector<int64_t>& dims, bool keep_dim,
 | |
|                       bool reduce_all) {
 | |
|   output->Allocate({1}, TypeToDataType<OutT>::dtype);
 | |
|   const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|   if (reduce_all) {
 | |
|     // Flatten and reduce 1-D tensor
 | |
|     auto x = EigenVector<OutT>::Flatten(input);
 | |
|     auto out = EigenScalar<OutT>::From(*output);
 | |
|     auto reduce_dim = Eigen::array<int, 1>({{0}});
 | |
| 
 | |
|     Functor functor;
 | |
|     functor(dev, &x, &out, reduce_dim);
 | |
|   } else {
 | |
|     int ndim = input.shape.size();
 | |
|     int rdim = dims.size();
 | |
|     if (ndim > 4) {
 | |
|       HandleLargeDim<OutT, Functor>(input, output, dims, keep_dim);
 | |
|     } else {
 | |
|       HANDLE_REDUCE_DIM(4, 3);
 | |
|       HANDLE_REDUCE_DIM(4, 2);
 | |
|       HANDLE_REDUCE_DIM(4, 1);
 | |
|       HANDLE_REDUCE_DIM(3, 2);
 | |
|       HANDLE_REDUCE_DIM(3, 1);
 | |
|       HANDLE_REDUCE_DIM(2, 1);
 | |
|       HANDLE_REDUCE_DIM(1, 1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename OutT, typename Functor>
 | |
| void BoolReduceKernel(const FDTensor& input, FDTensor* output,
 | |
|                       const std::vector<int64_t>& dims, bool keep_dim,
 | |
|                       bool reduce_all) {
 | |
|   // The dims has full dim, set the reduce_all is True
 | |
|   const auto& input_dim_size = input.shape.size();
 | |
|   std::set<int> dims_set(dims.begin(), dims.end());
 | |
|   bool full_dim = true;
 | |
|   for (auto i = 0; i < input_dim_size; i++) {
 | |
|     if (dims_set.find(i) == dims_set.end()) {
 | |
|       full_dim = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   reduce_all = (reduce_all || full_dim);
 | |
| 
 | |
|   ReduceKernelImpl<bool, Functor>(input, output, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| template <typename Functor>
 | |
| void Reduce(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|             bool keep_dim, bool reduce_all) {
 | |
|   // If the dims has full dim, set the reduce_all is True
 | |
|   const int& input_dim_size = x.shape.size();
 | |
|   std::set<int> dims_set(dims.begin(), dims.end());
 | |
|   bool full_dim = true;
 | |
|   for (int i = 0; i < input_dim_size; ++i) {
 | |
|     if (dims_set.find(i) == dims_set.end() &&
 | |
|         dims_set.find(i - input_dim_size) == dims_set.end()) {
 | |
|       full_dim = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   reduce_all = (reduce_all || full_dim);
 | |
| 
 | |
|   FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ReduceKernelImpl", ([&] {
 | |
|                              ReduceKernelImpl<data_t, Functor>(
 | |
|                                  x, out, dims, keep_dim, reduce_all);
 | |
|                            }));
 | |
| }
 | |
| 
 | |
| enum ArgMinMaxType { kArgMin, kArgMax };
 | |
| 
 | |
| template <typename T, typename Tout, int64_t Rank, ArgMinMaxType argMinMaxValue>
 | |
| struct ArgMinMaxFunctor {};
 | |
| 
 | |
| #define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value) \
 | |
|   template <typename T, typename Tout, int64_t Rank>                     \
 | |
|   struct ArgMinMaxFunctor<T, Tout, Rank, enum_argminmax_value> {         \
 | |
|     void operator()(const FDTensor& in, FDTensor* out,                   \
 | |
|                     const std::vector<int64_t>& x_dims, int64_t axis,    \
 | |
|                     bool keepdims, bool flatten) {                       \
 | |
|       const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice(); \
 | |
|       auto in_eigen = EigenTensor<T, Rank>::From(in, x_dims);            \
 | |
|       if (keepdims) {                                                    \
 | |
|         if (!flatten) {                                                  \
 | |
|           auto out_eigen = EigenTensor<Tout, Rank>::From(*out);          \
 | |
|           out_eigen.device(dev) =                                        \
 | |
|               in_eigen.eigen_op_type(axis).template cast<Tout>();        \
 | |
|         } else {                                                         \
 | |
|           auto out_eigen = EigenScalar<Tout>::From(*out);                \
 | |
|           out_eigen.device(dev) =                                        \
 | |
|               in_eigen.eigen_op_type(axis).template cast<Tout>();        \
 | |
|         }                                                                \
 | |
|       } else {                                                           \
 | |
|         auto out_eigen = EigenTensor<Tout, Rank - 1>::From(*out);        \
 | |
|         out_eigen.device(dev) =                                          \
 | |
|             in_eigen.eigen_op_type(axis).template cast<Tout>();          \
 | |
|       }                                                                  \
 | |
|     }                                                                    \
 | |
|   }
 | |
| 
 | |
| DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin);
 | |
| DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax);
 | |
| 
 | |
| template <typename T, typename Tout, ArgMinMaxType EnumArgMinMaxValue>
 | |
| void ArgMinMaxKernel(const FDTensor& x, FDTensor* out, int64_t axis,
 | |
|                      bool keepdims, bool flatten) {
 | |
|   bool new_keepdims = keepdims | flatten;
 | |
|   // if flatten, will construct the new dims for the cacluate
 | |
|   std::vector<int64_t> x_dims;
 | |
|   int new_axis = axis;
 | |
|   if (flatten) {
 | |
|     x_dims = {x.Numel()};
 | |
|     // if flatten, the axis just as 0
 | |
|     new_axis = 0;
 | |
|   } else {
 | |
|     x_dims = x.shape;
 | |
|     if (axis < 0) new_axis = axis + x_dims.size();
 | |
|   }
 | |
| #define CALL_ARG_MINMAX_FUNCTOR(rank)                                \
 | |
|   ArgMinMaxFunctor<T, Tout, rank, EnumArgMinMaxValue> functor##rank; \
 | |
|   functor##rank(x, out, x_dims, new_axis, new_keepdims, flatten)
 | |
| 
 | |
|   switch (x_dims.size()) {
 | |
|     case 1:
 | |
|       CALL_ARG_MINMAX_FUNCTOR(1);
 | |
|       break;
 | |
|     case 2:
 | |
|       CALL_ARG_MINMAX_FUNCTOR(2);
 | |
|       break;
 | |
|     case 3:
 | |
|       CALL_ARG_MINMAX_FUNCTOR(3);
 | |
|       break;
 | |
|     case 4:
 | |
|       CALL_ARG_MINMAX_FUNCTOR(4);
 | |
|       break;
 | |
|     case 5:
 | |
|       CALL_ARG_MINMAX_FUNCTOR(5);
 | |
|       break;
 | |
|     case 6:
 | |
|       CALL_ARG_MINMAX_FUNCTOR(6);
 | |
|       break;
 | |
|     default:
 | |
|       FDASSERT(x_dims.size() <= 6,
 | |
|                "%s operator doesn't supports tensors whose ranks are greater "
 | |
|                "than 6.",
 | |
|                (EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax"));
 | |
|       break;
 | |
| #undef CALL_ARG_MINMAX_FUNCTOR
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T, ArgMinMaxType EnumArgMinMaxValue>
 | |
| void ArgMinMax(const FDTensor& x, FDTensor* out, int64_t axis,
 | |
|                FDDataType output_dtype, bool keepdims, bool flatten) {
 | |
|   const auto& x_dims = x.shape;
 | |
|   int64_t x_rank = x_dims.size();
 | |
|   FDASSERT(axis >= -x_rank,
 | |
|            "'axis'(%lld) must be greater than or equal to -Rank(X)(%lld).",
 | |
|            axis, -x_rank);
 | |
|   FDASSERT(axis < x_rank,
 | |
|            "'axis'(%lld) must be less than or equal to Rank(X)(%lld).", axis,
 | |
|            x_rank);
 | |
|   FDASSERT(output_dtype == FDDataType::INT32 || FDDataType::INT64,
 | |
|            "The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
 | |
|            "received [%s].",
 | |
|            Str(FDDataType::INT32).c_str(), Str(FDDataType::INT64).c_str(),
 | |
|            Str(output_dtype).c_str());
 | |
|   if (axis < 0) axis += x_rank;
 | |
|   if (output_dtype == FDDataType::INT32) {
 | |
|     int64_t all_element_num = 0;
 | |
|     if (flatten) {
 | |
|       all_element_num = x.Numel();
 | |
| 
 | |
|     } else {
 | |
|       all_element_num = x_dims[axis];
 | |
|     }
 | |
|     FDASSERT(all_element_num <= (std::numeric_limits<int>::max)(),
 | |
|              "The element num of the argmin/argmax input at axis is "
 | |
|              "%lld, is larger than int32 maximum value:%d, you must "
 | |
|              "set the dtype of argmin/argmax to 'int64'.",
 | |
|              all_element_num, (std::numeric_limits<int>::max)());
 | |
|   }
 | |
|   std::vector<int64_t> vec;
 | |
|   if (flatten) {
 | |
|     vec.emplace_back(static_cast<int64_t>(1));
 | |
|   } else {
 | |
|     for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]);
 | |
|     if (keepdims) {
 | |
|       vec.emplace_back(static_cast<int64_t>(1));
 | |
|     }
 | |
|     for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]);
 | |
|   }
 | |
|   out->Allocate(vec, output_dtype);
 | |
| 
 | |
|   FD_VISIT_INT_TYPES(output_dtype, "ArgMinMaxKernel", ([&] {
 | |
|                        ArgMinMaxKernel<T, data_t, EnumArgMinMaxValue>(
 | |
|                            x, out, axis, keepdims, flatten);
 | |
|                      }));
 | |
| }
 | |
| 
 | |
| void Max(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|          bool keep_dim, bool reduce_all) {
 | |
|   Reduce<MaxFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void Min(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|          bool keep_dim, bool reduce_all) {
 | |
|   Reduce<MinFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void Sum(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|          bool keep_dim, bool reduce_all) {
 | |
|   Reduce<SumFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void All(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|          bool keep_dim, bool reduce_all) {
 | |
|   BoolReduceKernel<bool, AllFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void Any(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|          bool keep_dim, bool reduce_all) {
 | |
|   BoolReduceKernel<bool, AnyFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void Mean(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|           bool keep_dim, bool reduce_all) {
 | |
|   Reduce<MeanFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void Prod(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
 | |
|           bool keep_dim, bool reduce_all) {
 | |
|   Reduce<ProdFunctor>(x, out, dims, keep_dim, reduce_all);
 | |
| }
 | |
| 
 | |
| void ArgMax(const FDTensor& x, FDTensor* out, int64_t axis,
 | |
|             FDDataType output_dtype, bool keep_dim, bool flatten) {
 | |
|   FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ArgMaxKernel", ([&] {
 | |
|                              ArgMinMax<data_t, kArgMax>(
 | |
|                                  x, out, axis, output_dtype, keep_dim, flatten);
 | |
|                            }));
 | |
| }
 | |
| 
 | |
| void ArgMin(const FDTensor& x, FDTensor* out, int64_t axis,
 | |
|             FDDataType output_dtype, bool keep_dim, bool flatten) {
 | |
|   FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ArgMaxKernel", ([&] {
 | |
|                              ArgMinMax<data_t, kArgMin>(
 | |
|                                  x, out, axis, output_dtype, keep_dim, flatten);
 | |
|                            }));
 | |
| }
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 | 
