Files
FastDeploy/fastdeploy/model_executor/layers/attention/attention.py
2025-08-05 16:46:14 +08:00

173 lines
6.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
if TYPE_CHECKING:
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.utils import get_tensor
class Attention(nn.Layer):
"""
The AttentionLayer.
"""
def __init__(
self,
fd_config: FDConfig,
layer_id: int,
v_head_dim: int = -1,
rope_type: str = "",
qkv_bias: Optional[paddle.Tensor] = None,
qkv_scale: Optional[paddle.Tensor] = None,
prefix: str = "",
out_scale: float = -1.0,
linear_shift: paddle.Tensor = None,
linear_smooth: paddle.Tensor = None,
use_neox_rotary_style: bool = False,
use_qk_norm: bool = False,
rms_norm_eps: float = 1e-6,
) -> None:
"""
Initializes `LMLayer` with the given parameters.
Args:
fd_config (dict): The config of LM model.
layer_id (int): The id of current layer.
v_head_dim (int, optional): The head dim of value. Defaults to -1.
rope_type (str, optional): The type of RoPE. Defaults to "".
qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None.
prefix (str, optional): The name of current layer. Defaults to "".
linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None.
linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None.
use_qk_norm (bool, optional): Whether to apply rmsnorm on QA after rope. Defaults to False.
rms_norm_eps (float, optional): The epsilon of RMSNorm. Defaults to 1e-6.
Raises:
ValueError: If the `v_head_dim` is less than 0.
"""
super().__init__()
self.num_heads: int = (
fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_size
)
self.head_dim: int = fd_config.model_config.head_dim
self.kv_num_heads: int = max(
1,
fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_size,
)
self.layer_id: int = layer_id
self.v_head_dim: int = v_head_dim if v_head_dim > 0 else self.head_dim
self.rope_type: str = rope_type
self.qk_head_dim: int = self.head_dim
self.prefix: str = prefix
# not use
self.linear_shift: paddle.Tensor | None = linear_shift
self.linear_smooth: paddle.Tensor | None = linear_smooth
self.qkv_bias: paddle.Tensor | None = qkv_bias
self.qkv_scale: paddle.Tensor | None = qkv_scale
self._dtype = self._helper.get_default_dtype()
self.out_scale: float = out_scale
self.use_neox_rotary_style: bool = use_neox_rotary_style
if fd_config.quant_config and hasattr(fd_config.quant_config, "kv_cache_quant_type"):
self.kvcache_quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(self)
else:
self.kvcache_quant_method = None
if self.kvcache_quant_method is None:
logger.info(f"Attention is running in cache kv {self._dtype} mode")
else:
logger.info(
f"Attention is running in cache kv {self.kvcache_quant_method.cache_quant_config.quant_type} mode"
)
self.use_qk_norm = use_qk_norm
self.rms_norm_eps = rms_norm_eps
if self.use_qk_norm:
self.q_norm_key = f"{self.prefix}.q_norm"
self.k_norm_key = f"{self.prefix}.k_norm"
self.init_weight()
def init_weight(self):
self.q_norm_weight = self.create_parameter(
shape=[self.qk_head_dim],
dtype=self._dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
self.k_norm_weight = self.create_parameter(
shape=[self.qk_head_dim],
dtype=self._dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
"""
Attention only have quant related scales not other parameters.
"""
if self.kvcache_quant_method is not None:
self.kvcache_quant_method.create_weights(self, state_dict)
if self.use_qk_norm:
q_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.q_norm_key + ".weight")))
k_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.k_norm_key + ".weight")))
self.q_norm_weight.set_value(q_norm_weight_tensor)
self.k_norm_weight.set_value(k_norm_weight_tensor)
def forward(
self,
q: paddle.Tensor = None,
k: paddle.Tensor = None,
v: paddle.Tensor = None,
qkv: paddle.Tensor = None,
compressed_kv: paddle.Tensor = None,
k_pe: paddle.Tensor = None,
forward_meta: ForwardMeta = None,
) -> paddle.Tensor:
"""
The forward function of attention layer.
args:
q: the query tensor
k: the key tensor
v: the value tensor
forward_meta: the forward meta data
compressed_kv: optional compressed key-value cache (for MLA)
k_pe: optional key positional encoding (for MLA)
"""
return forward_meta.attn_backend.forward(
q,
k,
v,
qkv,
compressed_kv,
k_pe,
self,
forward_meta,
)