Files
FastDeploy/fastdeploy/vision/ocr/ppocr/classifier.cc
yeliang2258 7b15f72516 [Backend] Add OCR、Seg、 KeypointDetection、Matting、 ernie-3.0 and adaface models for XPU Deploy (#960)
* [FlyCV] Bump up FlyCV -> official release 1.0.0

* add seg models for XPU

* add ocr model for XPU

* add matting

* add matting python

* fix infer.cc

* add keypointdetection support for XPU

* Add adaface support for XPU

* add ernie-3.0

* fix doc

Co-authored-by: DefTruth <qiustudent_r@163.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-12-26 15:02:58 +08:00

97 lines
3.4 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/classifier.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
Classifier::Classifier() {}
Classifier::Classifier(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT,
Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_xpu_backends = {Backend::LITE};
valid_ascend_backends = {Backend::LITE};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool Classifier::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label, float* cls_score) {
std::vector<int32_t> cls_labels(1);
std::vector<float> cls_scores(1);
bool success = BatchPredict({img}, &cls_labels, &cls_scores);
if(!success){
return success;
}
*cls_label = cls_labels[0];
*cls_score = cls_scores[0];
return true;
}
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels, std::vector<float>* cls_scores) {
return BatchPredict(images, cls_labels, cls_scores, 0, images.size());
}
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels, std::vector<float>* cls_scores,
size_t start_index, size_t end_index) {
size_t total_size = images.size();
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index, end_index)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, cls_labels, cls_scores, start_index, total_size)) {
FDERROR << "Failed to postprocess the inference cls_results by runtime." << std::endl;
return false;
}
return true;
}
} // namesapce ocr
} // namespace vision
} // namespace fastdeploy