mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [FlyCV] Bump up FlyCV -> official release 1.0.0 * add seg models for XPU * add ocr model for XPU * add matting * add matting python * fix infer.cc * add keypointdetection support for XPU * Add adaface support for XPU * add ernie-3.0 * fix doc Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
182 lines
6.6 KiB
C++
Executable File
182 lines
6.6 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void CpuInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseCpu();
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void XpuInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseXpu();
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
|
|
void GpuInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void TrtInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto tinypose_option = fastdeploy::RuntimeOption();
|
|
tinypose_option.UseGpu();
|
|
tinypose_option.UseTrtBackend();
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file,
|
|
tinypose_option);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image "
|
|
"run_option, "
|
|
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend; 3: run with xpu."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if (std::atoi(argv[3]) == 0) {
|
|
CpuInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 1) {
|
|
GpuInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 2) {
|
|
TrtInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 3) {
|
|
TrtInfer(argv[1], argv[2]);
|
|
}
|
|
return 0;
|
|
}
|