mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00
259 lines
9.3 KiB
Python
259 lines
9.3 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import logging
|
|
import threading
|
|
import time
|
|
from multiprocessing import Queue
|
|
from typing import Dict, List, Optional
|
|
|
|
from fastdeploy.engine.request import Request, RequestOutput
|
|
from fastdeploy.scheduler.data import ScheduledResponse
|
|
from fastdeploy.scheduler.local_scheduler import LocalScheduler
|
|
from fastdeploy.utils import envs, get_logger
|
|
|
|
|
|
class DPLocalScheduler(LocalScheduler):
|
|
def __init__(
|
|
self,
|
|
max_size: int,
|
|
ttl: int,
|
|
enable_chunked_prefill: bool,
|
|
max_num_partial_prefills: int,
|
|
max_long_partial_prefills: int,
|
|
long_prefill_token_threshold: int,
|
|
splitwise_role: str = "prefill",
|
|
):
|
|
super().__init__(
|
|
max_size,
|
|
ttl,
|
|
enable_chunked_prefill,
|
|
max_num_partial_prefills,
|
|
max_long_partial_prefills,
|
|
long_prefill_token_threshold,
|
|
)
|
|
self.splitwise_role = splitwise_role
|
|
self.scheduler_logger = logging
|
|
|
|
def put_results(self, results: List[RequestOutput]):
|
|
"""
|
|
Add processing results back to the scheduler.
|
|
Args:
|
|
results: List of RequestOutput objects containing results
|
|
"""
|
|
responses: List[ScheduledResponse] = [ScheduledResponse(result) for result in results]
|
|
|
|
finished_responses = [response.request_id for response in responses if response.finished]
|
|
if len(finished_responses) > 0:
|
|
self.scheduler_logger.info(f"Scheduler has received some finished responses: {finished_responses}")
|
|
|
|
with self.mutex:
|
|
for response in responses:
|
|
if response.request_id not in self.responses:
|
|
self.responses[response.request_id] = [response]
|
|
continue
|
|
self.responses[response.request_id].append(response)
|
|
self.responses_not_empty.notify_all()
|
|
|
|
def _recycle(self, request_id: Optional[str] = None):
|
|
"""
|
|
Clean up expired or completed requests to free memory.
|
|
Args:
|
|
request_id: Optional specific request ID to remove.
|
|
If None, removes all expired requests.
|
|
"""
|
|
if request_id is not None:
|
|
self.requests.pop(request_id, None)
|
|
self.responses.pop(request_id, None)
|
|
if self.splitwise_role == "decode":
|
|
return
|
|
self.ids.pop(self.ids.index(request_id))
|
|
self.ids_read_cursor -= 1
|
|
return
|
|
|
|
if self.max_size <= 0:
|
|
return
|
|
|
|
if len(self.requests) <= self.max_size:
|
|
return
|
|
|
|
now = time.time()
|
|
expired_ids = []
|
|
for request_id in self.ids:
|
|
request = self.requests[request_id]
|
|
if now - request.schedule_time < self.ttl:
|
|
break
|
|
expired_ids.append(request.request_id)
|
|
|
|
for i, expired_id in enumerate(expired_ids):
|
|
self.requests.pop(expired_id, None)
|
|
self.responses.pop(expired_id, None)
|
|
self.ids.pop(i)
|
|
|
|
if len(expired_ids) > 0:
|
|
if len(expired_ids) - 1 >= self.ids_read_cursor:
|
|
self.ids_read_cursor = 0
|
|
else:
|
|
self.ids_read_cursor -= len(expired_ids)
|
|
|
|
def get_requests(
|
|
self,
|
|
available_blocks,
|
|
block_size,
|
|
reserved_output_blocks,
|
|
max_num_batched_tokens,
|
|
batch=1,
|
|
) -> List[Request]:
|
|
"""
|
|
Retrieve requests from the scheduler based on available resources.
|
|
|
|
Args:
|
|
available_blocks: Number of available processing blocks
|
|
block_size: Size of each processing block
|
|
reserved_output_blocks: Blocks reserved for output
|
|
max_num_batched_tokens: Maximum tokens that can be batched
|
|
batch: Preferred batch size
|
|
|
|
Returns:
|
|
List of Request objects ready for processing
|
|
"""
|
|
if available_blocks <= reserved_output_blocks or batch < 1:
|
|
self.scheduler_logger.debug(
|
|
f"Scheduler's resource are insufficient: available_blocks={available_blocks} "
|
|
f"reserved_output_blocks={reserved_output_blocks} batch={batch} "
|
|
f"max_num_batched_tokens={max_num_batched_tokens}"
|
|
)
|
|
return []
|
|
required_total_blocks = 0
|
|
current_prefill_tokens = 0
|
|
start_batch_time = time.time()
|
|
requests: List[Request] = []
|
|
|
|
with self.requests_not_empty:
|
|
while True:
|
|
batch_ids = self.requests_not_empty.wait_for(
|
|
lambda: self.ids[self.ids_read_cursor : self.ids_read_cursor + batch],
|
|
0.005,
|
|
)
|
|
if batch_ids:
|
|
for request_id in batch_ids:
|
|
request = self.requests[request_id]
|
|
required_input_blocks = self.calc_required_blocks(request.prompt_tokens_ids_len, block_size)
|
|
current_prefill_tokens += request.prompt_tokens_ids_len
|
|
required_total_blocks += required_input_blocks + reserved_output_blocks
|
|
if required_total_blocks > available_blocks:
|
|
break
|
|
|
|
requests.append(request.raw)
|
|
self.ids_read_cursor += 1
|
|
start_batch_time = time.time()
|
|
if current_prefill_tokens > max_num_batched_tokens:
|
|
break
|
|
if len(requests) >= batch:
|
|
break
|
|
if (
|
|
(current_prefill_tokens > max_num_batched_tokens)
|
|
or (len(requests) >= batch)
|
|
or (time.time() - start_batch_time > envs.FD_EP_BATCHED_TOKEN_TIMEOUT)
|
|
):
|
|
break
|
|
if batch_ids:
|
|
if len(batch_ids) > 0 and len(requests) == 0:
|
|
self.scheduler_logger.debug(
|
|
f"Scheduler has put all just-pulled request into the queue: {len(batch_ids)}"
|
|
)
|
|
|
|
if len(requests) > 0:
|
|
self.scheduler_logger.info(
|
|
f"Scheduler has pulled some request: {[request.request_id for request in requests]}"
|
|
)
|
|
|
|
return requests
|
|
|
|
|
|
class DPScheduler:
|
|
def __init__(
|
|
self,
|
|
max_size: int,
|
|
ttl: int,
|
|
enable_chunked_prefill: bool,
|
|
max_num_partial_prefills: int,
|
|
max_long_partial_prefills: int,
|
|
long_prefill_token_threshold: int,
|
|
splitwise_role: str = "prefill",
|
|
):
|
|
self._scheduler = DPLocalScheduler(
|
|
max_size,
|
|
ttl,
|
|
enable_chunked_prefill,
|
|
max_num_partial_prefills,
|
|
max_long_partial_prefills,
|
|
long_prefill_token_threshold,
|
|
splitwise_role,
|
|
)
|
|
|
|
def start(self, dp_rank: int, request_queues: List[Queue], result_queue: Queue):
|
|
self.dp_rank = dp_rank
|
|
self.request_queues = request_queues
|
|
self.result_queue = result_queue
|
|
self.scheduler_logger = get_logger("dpscheduler", f"dp_scheduler_rank{self.dp_rank}.log")
|
|
self._scheduler.scheduler_logger = self.scheduler_logger
|
|
threading.Thread(target=self._put_requests_to_local).start()
|
|
threading.Thread(target=self._get_response_from_local).start()
|
|
|
|
def put_requests(self, requests: List[Dict]):
|
|
results = []
|
|
for request in requests:
|
|
if not hasattr(request, "dp_rank"):
|
|
raise ValueError(f"Request object is missing the 'dp_rank' attribute: {request}")
|
|
self.request_queues[request.dp_rank].put(request)
|
|
results.append((request.request_id, None))
|
|
return results
|
|
|
|
def _put_requests_to_local(self):
|
|
while True:
|
|
request = self.request_queues[self.dp_rank].get()
|
|
self.scheduler_logger.info(f"Recieve request from puller, request_id: {request.request_id}")
|
|
self._scheduler.put_requests([request])
|
|
|
|
def _get_response_from_local(self):
|
|
while True:
|
|
results = self._scheduler.get_results()
|
|
if len(results) == 0:
|
|
continue
|
|
self.result_queue.put(results)
|
|
|
|
def get_requests(
|
|
self,
|
|
available_blocks,
|
|
block_size,
|
|
reserved_output_blocks,
|
|
max_num_batched_tokens,
|
|
batch=1,
|
|
) -> List[Request]:
|
|
return self._scheduler.get_requests(
|
|
available_blocks, block_size, reserved_output_blocks, max_num_batched_tokens, batch
|
|
)
|
|
|
|
def get_unhandled_request_num(self):
|
|
return len(self._scheduler.requests)
|
|
|
|
def put_results(self, results: List[RequestOutput]):
|
|
self._scheduler.put_results(results)
|
|
|
|
def get_results(self) -> Dict[str, List[RequestOutput]]:
|
|
return self.result_queue.get()
|