mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 13:22:23 +08:00
215 lines
8.3 KiB
C++
215 lines
8.3 KiB
C++
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#include <chrono>
|
|
#include <cstdlib>
|
|
#include "paddle/extension.h"
|
|
|
|
#ifndef PD_BUILD_STATIC_OP
|
|
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
|
|
#endif
|
|
|
|
int sum(const int *value, int num) {
|
|
int sum_value = 0;
|
|
for (int i = 0; i <= num; i++) {
|
|
sum_value += value[i];
|
|
}
|
|
return sum_value;
|
|
}
|
|
|
|
void find_candidate_pred_tokens(const int64_t *input_ids,
|
|
const int64_t *input_ids_len,
|
|
const int64_t *pre_ids,
|
|
const int64_t *step_idx,
|
|
const int *draft_token_num,
|
|
int64_t *draft_tokens,
|
|
int32_t *seq_lens_this_time,
|
|
int32_t *seq_lens_encoder,
|
|
int32_t *seq_lens_decoder,
|
|
int64_t *max_dec_len,
|
|
int64_t input_ids_stride,
|
|
int64_t pre_ids_stride,
|
|
int64_t draft_tokens_stride,
|
|
int64_t max_batch_size,
|
|
int max_ngram_size = 3,
|
|
int max_draft_tokens = 10) {
|
|
int threshold = 128;
|
|
char *env_var = getenv("INFER_WITH_REFERENCE_TOKENUM_THRESHOLD");
|
|
if (env_var) {
|
|
threshold = std::stoi(env_var);
|
|
}
|
|
int unprocessed_batch_size = 0;
|
|
for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
|
|
if (seq_lens_encoder[batch_idx] > 0 || seq_lens_decoder[batch_idx] > 0) {
|
|
unprocessed_batch_size++;
|
|
}
|
|
}
|
|
for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
|
|
max_draft_tokens = std::min(static_cast<int64_t>(
|
|
draft_token_num[batch_idx]), max_dec_len[batch_idx] - step_idx[batch_idx] - 1);
|
|
if (seq_lens_encoder[batch_idx] > 0) {
|
|
continue;
|
|
} else if (seq_lens_decoder[batch_idx] == 0) {
|
|
seq_lens_this_time[batch_idx] = 0;
|
|
continue;
|
|
}
|
|
// printf("bid: %d. enc: %d. dec. %d\n", batch_idx, seq_lens_encoder[batch_idx], seq_lens_decoder[batch_idx]);
|
|
|
|
const int64_t *cur_input_ids = input_ids + batch_idx * input_ids_stride;
|
|
int64_t *cur_draft_tokens = draft_tokens + batch_idx * draft_tokens_stride;
|
|
const int64_t *cur_pre_ids = pre_ids + batch_idx * pre_ids_stride;
|
|
const int64_t cur_step_idx = step_idx[batch_idx];
|
|
const int64_t cur_input_ids_len = input_ids_len[batch_idx];
|
|
seq_lens_this_time[batch_idx] = 1;
|
|
unprocessed_batch_size--;
|
|
|
|
auto sum_token_num = sum(seq_lens_this_time, batch_idx);
|
|
int left_min_token_num = unprocessed_batch_size;
|
|
|
|
if (sum_token_num + max_draft_tokens + left_min_token_num > threshold) {
|
|
int tmp_max_draft_tokens = threshold - sum_token_num - left_min_token_num;
|
|
max_draft_tokens = tmp_max_draft_tokens < max_draft_tokens ? tmp_max_draft_tokens : max_draft_tokens;
|
|
}
|
|
|
|
if (sum_token_num + left_min_token_num >= threshold - 1) {
|
|
continue;
|
|
}
|
|
|
|
for (int ngram_size = max_ngram_size; ngram_size > 0; --ngram_size) {
|
|
// Extract the last n tokens as our search ngram
|
|
if (cur_step_idx < ngram_size) {
|
|
continue;
|
|
}
|
|
const int64_t *ngram = cur_pre_ids + (cur_step_idx + 1 - ngram_size);
|
|
|
|
// Iterate through sliding windows of size ngram_size
|
|
bool match_input = false;
|
|
for (int64_t i = 0; i <= cur_input_ids_len - ngram_size; ++i) {
|
|
// Check if the current window matches the ngram
|
|
bool match = true;
|
|
for (int j = 0; j < ngram_size; j++) {
|
|
if (ngram[j] != cur_input_ids[i + j]) {
|
|
match = false;
|
|
break;
|
|
}
|
|
}
|
|
if (match) {
|
|
int64_t start_idx = i + ngram_size;
|
|
int64_t end_idx = std::min(start_idx + max_draft_tokens, cur_input_ids_len);
|
|
if (start_idx >= end_idx)
|
|
continue;
|
|
|
|
int64_t cur_draft_token_num = end_idx - start_idx;
|
|
|
|
seq_lens_this_time[batch_idx] = cur_draft_token_num + 1;
|
|
memcpy(cur_draft_tokens + 1, cur_input_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
|
|
// To break the current batch_idx for-loop
|
|
ngram_size = 0;
|
|
match_input = true;
|
|
break;
|
|
// }
|
|
}
|
|
}
|
|
if (!match_input) {
|
|
for (int64_t i = 0; i <= cur_step_idx - ngram_size; ++i) {
|
|
// Check if the current window matches the ngram
|
|
bool match = true;
|
|
|
|
for (int j = 0; j < ngram_size; j++) {
|
|
if (ngram[j] != cur_pre_ids[i + j]) {
|
|
match = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (match) {
|
|
int64_t start_idx = i + ngram_size;
|
|
int64_t end_idx = std::min(start_idx + max_draft_tokens, cur_step_idx);
|
|
int64_t cur_draft_token_num = end_idx - start_idx;
|
|
if (start_idx >= end_idx)
|
|
continue;
|
|
|
|
seq_lens_this_time[batch_idx] = cur_draft_token_num + 1;
|
|
memcpy(cur_draft_tokens + 1, cur_pre_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
|
|
ngram_size = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NgramMatch(const paddle::Tensor &input_ids,
|
|
const paddle::Tensor &input_ids_len,
|
|
const paddle::Tensor &pre_ids,
|
|
const paddle::Tensor &step_idx,
|
|
const paddle::Tensor &draft_token_num,
|
|
const paddle::Tensor &draft_tokens,
|
|
const paddle::Tensor &seq_lens_this_time,
|
|
const paddle::Tensor &seq_lens_encoder,
|
|
const paddle::Tensor &seq_lens_decoder,
|
|
const paddle::Tensor &max_dec_len,
|
|
const int max_ngram_size,
|
|
const int max_draft_tokens) {
|
|
|
|
auto input_ids_shape = input_ids.shape();
|
|
const int64_t input_ids_stride = input_ids_shape[1];
|
|
|
|
auto pre_ids_shape = pre_ids.shape();
|
|
const int64_t pre_ids_stride = pre_ids_shape[1];
|
|
|
|
auto draft_tokens_shape = draft_tokens.shape();
|
|
const int64_t draft_tokens_stride = draft_tokens_shape[1];
|
|
|
|
const int64_t max_batch_size = seq_lens_this_time.shape()[0];
|
|
|
|
find_candidate_pred_tokens(input_ids.data<int64_t>(),
|
|
input_ids_len.data<int64_t>(),
|
|
pre_ids.data<int64_t>(),
|
|
step_idx.data<int64_t>(),
|
|
draft_token_num.data<int>(),
|
|
const_cast<int64_t *>(draft_tokens.data<int64_t>()),
|
|
const_cast<int32_t *>(seq_lens_this_time.data<int32_t>()),
|
|
const_cast<int32_t *>(seq_lens_encoder.data<int32_t>()),
|
|
const_cast<int32_t *>(seq_lens_decoder.data<int32_t>()),
|
|
const_cast<int64_t *>(max_dec_len.data<int64_t>()),
|
|
input_ids_stride,
|
|
pre_ids_stride,
|
|
draft_tokens_stride,
|
|
max_batch_size,
|
|
max_ngram_size,
|
|
max_draft_tokens);
|
|
}
|
|
|
|
PD_BUILD_STATIC_OP(ngram_match)
|
|
.Inputs({"input_ids",
|
|
"input_ids_len",
|
|
"pre_ids",
|
|
"step_idx",
|
|
"draft_token_num",
|
|
"draft_tokens",
|
|
"seq_lens_this_time",
|
|
"seq_lens_encoder",
|
|
"seq_lens_decoder",
|
|
"max_dec_len"})
|
|
.Attrs({"max_ngram_size: int", "max_draft_tokens: int"})
|
|
.Outputs({"draft_tokens_out", "seq_lens_this_time_out"})
|
|
.SetKernelFn(PD_KERNEL(NgramMatch))
|
|
.SetInplaceMap({{"draft_tokens", "draft_tokens_out"}, {"seq_lens_this_time", "seq_lens_this_time_out"}});
|