Files
FastDeploy/tests/input/test_ernie4_5_processor.py
2025-11-19 10:51:02 +08:00

342 lines
12 KiB
Python

import unittest
from unittest.mock import MagicMock, patch
import numpy as np
MODULE_PATH = "fastdeploy.input.ernie4_5_processor"
from fastdeploy.input.ernie4_5_processor import _SAMPLING_EPS, Ernie4_5Processor
class MockTokenizer:
"""A simple mock tokenizer used to simulate tokenization behavior in unit tests."""
def __init__(self):
self.bos_token = "<bos>"
self.bos_token_id = 101
self.eos_token = "<eos>"
self.eos_token_id = 102
self.pad_token_id = 0
self.vocab_size = 200
# Non-None value indicates chat_template support
self.chat_template = "dummy"
def tokenize(self, text):
"""Return multi-token output for 'multi*' to test branching; otherwise return single-token."""
if text.startswith("multi"):
return ["multi", "word"]
return [text]
def convert_tokens_to_ids(self, tokens):
"""Map tokens to synthetic IDs for branch coverage."""
mapping = {
"bad": 5,
" bad": 6,
"multi": 7,
"word": 8,
"oov": 250,
" oov": 251,
"hello": 9,
"REASON": 42,
}
return [mapping.get(t, 1) for t in tokens]
def decode(self, token_ids, **kwargs):
"""Simple decode implementation returning a space-separated string."""
return " ".join(str(t) for t in token_ids)
def decode_token(self, token_ids, prefix_offset, read_offset):
"""Incremental decode used to test streaming behavior."""
new_tokens = token_ids[read_offset:]
decode_str = " ".join(str(t) for t in new_tokens)
new_read_offset = len(token_ids)
return decode_str, prefix_offset, new_read_offset
def apply_chat_template(self, request_or_messages, tokenize, split_special_tokens, add_special_tokens, **kwargs):
"""Minimal chat template implementation used by messages2ids."""
if isinstance(request_or_messages, dict) and "messages" in request_or_messages:
return " | ".join(m["content"] for m in request_or_messages["messages"])
return str(request_or_messages)
class ErnieX1ReasoningParser:
"""Mock reasoning parser to trigger reasoning-related branches during streaming."""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def extract_reasoning_content_streaming(
self,
previous_texts,
full_text,
delta_text,
previous_token_ids,
all_token_ids,
delta_token_ids,
):
"""Return a simple object with reasoning_content to cover reasoning branch."""
class ReasoningDelta:
def __init__(self, content):
self.reasoning_content = content
return ReasoningDelta("REASON")
class MockToolParser:
"""Mock tool parser to cover tool-related branches in both normal and streaming responses."""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
class ToolDelta:
"""Simple container representing detected tool calls."""
def __init__(self):
self.tool_calls = [{"name": "fake_tool"}]
self.tools_called = True
self.content = "tool_content"
def extract_tool_calls(self, full_text, response_dict):
"""Used in process_response and process_response_dict_normal."""
return MockToolParser.ToolDelta()
def extract_tool_calls_streaming(
self,
previous_texts,
full_text,
delta_text,
previous_token_ids,
all_token_ids,
delta_token_ids,
response_dict,
):
"""Used in process_response_dict_streaming."""
return MockToolParser.ToolDelta()
class TestErnie4_5Processor(unittest.TestCase):
"""Unit tests for Ernie4_5Processor focusing on preprocessing and postprocessing logic."""
def setUp(self):
"""Patch external dependencies: tokenizer, generation config, eos token resolution."""
self.gen_patcher = patch(f"{MODULE_PATH}.GenerationConfig.from_pretrained", return_value=MagicMock())
self.tokenizer_patcher = patch(
f"{MODULE_PATH}.Ernie4_5Tokenizer.from_pretrained", side_effect=lambda path: MockTokenizer()
)
self.eos_patcher = patch(
"paddleformers.trl.llm_utils.get_eos_token_id",
side_effect=lambda tokenizer, cfg: [tokenizer.eos_token_id],
)
self.gen_patcher.start()
self.tokenizer_patcher.start()
self.eos_patcher.start()
def tearDown(self):
"""Stop all patches after each test."""
self.gen_patcher.stop()
self.tokenizer_patcher.stop()
self.eos_patcher.stop()
def _make_processor(self, reasoning=False, tool=False):
"""Helper for creating a processor with optional reasoning/tool parser support."""
reasoning_cls = ErnieX1ReasoningParser if reasoning else None
tool_cls = MockToolParser if tool else None
proc = Ernie4_5Processor("dummy-model", reasoning_parser_obj=reasoning_cls, tool_parser_obj=tool_cls)
proc._apply_default_parameters = lambda req: req
return proc
def test_update_bad_words(self):
"""Verify filtering, multi-token skipping, and OOV behavior in update_bad_words."""
proc = self._make_processor()
bad_words = ["bad", "multi", "oov"]
token_ids = proc.update_bad_words(bad_words, bad_words_token_ids=None)
self.assertEqual(token_ids, [5, 6, 1])
def test_process_request_dict_with_prompt_string(self):
"""Test prompt-based tokenization, truncation, and temperature/top_p correction."""
proc = self._make_processor()
req = {
"prompt": "hello",
"temperature": 0.0,
"top_p": 0.0,
}
processed = proc.process_request_dict(req, max_model_len=10)
self.assertIn("eos_token_ids", processed)
self.assertEqual(processed["eos_token_ids"], [proc.tokenizer.eos_token_id])
expected_ids = proc.tokenizer.convert_tokens_to_ids(proc.tokenizer.tokenize("hello"))
self.assertEqual(processed["prompt_token_ids"], expected_ids)
self.assertEqual(processed["max_tokens"], max(1, 10 - len(expected_ids)))
self.assertEqual(processed["temperature"], 1)
self.assertAlmostEqual(processed["top_p"], _SAMPLING_EPS)
self.assertEqual(processed["prompt_tokens"], "hello")
def test_pad_batch_data_right_and_left_and_empty(self):
"""Test left/right padding and empty input behavior."""
proc = self._make_processor()
insts = [[1, 2], [3]]
padded, seq_len = proc.pad_batch_data(
insts, pad_id=0, return_seq_len=True, return_array=True, pad_style="right"
)
np.testing.assert_array_equal(padded, np.array([[1, 2], [3, 0]], dtype=np.int64))
np.testing.assert_array_equal(seq_len, np.array([[2], [1]], dtype=np.int64))
padded_left, seq_len_left = proc.pad_batch_data(
insts, pad_id=0, return_seq_len=True, return_array=True, pad_style="left"
)
np.testing.assert_array_equal(padded_left, np.array([[1, 2], [0, 3]], dtype=np.int64))
np.testing.assert_array_equal(seq_len_left, np.array([[2], [1]], dtype=np.int64))
padded_empty, seq_len_empty = proc.pad_batch_data(
[], pad_id=0, return_seq_len=True, return_array=True, pad_style="right"
)
np.testing.assert_array_equal(padded_empty, np.array([[]], dtype=np.int64))
np.testing.assert_array_equal(seq_len_empty, np.array([], dtype=np.int64))
def test_process_response_dict_streaming_with_reasoning_and_tool(self):
"""Ensure streaming mode handles reasoning and tool-call parsing correctly."""
proc = self._make_processor(reasoning=True, tool=True)
response = {
"finished": True,
"request_id": "req-1",
"outputs": {"token_ids": [10, 11]},
}
result = proc.process_response_dict_streaming(
response, enable_thinking=False, include_stop_str_in_output=False
)
outputs = result["outputs"]
self.assertIn("completion_tokens", outputs)
self.assertIn("text", outputs)
self.assertEqual(outputs["completion_tokens"], outputs["text"])
self.assertIn("reasoning_token_num", outputs)
self.assertGreaterEqual(outputs["reasoning_token_num"], 0)
self.assertIn("delta_message", outputs)
delta_msg = outputs["delta_message"]
self.assertTrue(hasattr(delta_msg, "tool_calls"))
self.assertNotIn("req-1", proc.decode_status)
self.assertNotIn("req-1", proc.tool_parser_dict)
def test_update_stop_seq(self):
"""Test stop sequence tokenization and padding."""
proc = self._make_processor()
stop_seqs, stop_lens = proc.update_stop_seq("stop")
self.assertIsInstance(stop_seqs, list)
self.assertIsInstance(stop_lens, list)
stop_seqs2, stop_lens2 = proc.update_stop_seq(["stop", "hello"])
self.assertEqual(len(stop_seqs2), 2)
self.assertEqual(len(stop_lens2), 2)
def test_process_request_chat_template_kwargs(self):
"""Test chat_template_kwargs application inside process_request."""
proc = self._make_processor()
class ReqObj(dict):
"""Mock request object supporting attributes, set(), and to_dict()."""
def set(self, k, v):
self[k] = v
def __getattr__(self, item):
return self.get(item, None)
def to_dict(self):
return dict(self)
request = ReqObj(
{
"messages": [{"role": "user", "content": "hello"}],
"temperature": 0.5,
"top_p": 0.5,
}
)
processed = proc.process_request(request, max_model_len=20, chat_template_kwargs={"extra": "VALUE"})
self.assertEqual(processed.eos_token_ids, [proc.tokenizer.eos_token_id])
expected_ids = proc.tokenizer.convert_tokens_to_ids(proc.tokenizer.tokenize("hello"))
self.assertIsNotNone(processed.prompt_token_ids)
self.assertEqual(processed.prompt_token_ids, expected_ids)
self.assertIn("max_tokens", processed)
self.assertEqual(processed["max_tokens"], max(1, 20 - len(expected_ids)))
def test_process_request_dict_chat_template_kwargs(self):
"""Test chat_template_kwargs insertion in process_request_dict."""
proc = self._make_processor()
req = {
"messages": [{"role": "user", "content": "hey"}],
"chat_template_kwargs": {"A": "B"},
"temperature": 0.5,
"top_p": 0.5,
}
result = proc.process_request_dict(req, max_model_len=30)
self.assertIn("prompt_token_ids", result)
self.assertEqual(result["A"], "B")
def test_init_generation_config_exception(self):
"""Test fallback behavior when GenerationConfig loading fails."""
with patch(f"{MODULE_PATH}.GenerationConfig.from_pretrained", side_effect=Exception("fail")):
proc = self._make_processor()
self.assertIsNone(proc.generation_config)
def test_process_response_with_tool_parser(self):
"""Verify tool_call extraction in process_response."""
proc = self._make_processor(tool=True)
class RespObj:
"""Mock response carrying token_ids and index for testing."""
def __init__(self):
self.request_id = "reqx"
self.outputs = MagicMock()
self.outputs.token_ids = [9, proc.tokenizer.eos_token_id]
self.outputs.index = 0
resp = RespObj()
result = proc.process_response(resp)
self.assertTrue(hasattr(result.outputs, "tool_calls"))
self.assertEqual(result.outputs.tool_calls[0]["name"], "fake_tool")
def test_process_response_dict_normal_with_tool(self):
"""Verify tool_call extraction in normal (non-streaming) response mode."""
proc = self._make_processor(tool=True)
resp = {
"finished": True,
"request_id": "task-99",
"outputs": {"token_ids": [10, 11], "text": ""},
}
result = proc.process_response_dict_normal(resp, enable_thinking=False, include_stop_str_in_output=False)
self.assertIn("tool_call", result["outputs"])
self.assertEqual(result["outputs"]["tool_call"][0]["name"], "fake_tool")
if __name__ == "__main__":
unittest.main()