mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 02bd22422e
			
		
	
	02bd22422e
	
	
	
		
			
			* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			144 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			144 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/contrib/yolov8/postprocessor.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| 
 | |
| YOLOv8Postprocessor::YOLOv8Postprocessor() {
 | |
|   conf_threshold_ = 0.25;
 | |
|   nms_threshold_ = 0.5;
 | |
|   multi_label_ = true;
 | |
|   max_wh_ = 7680.0;
 | |
| }
 | |
| 
 | |
| bool YOLOv8Postprocessor::Run(
 | |
|     const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
 | |
|     const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
 | |
|   int batch = tensors[0].shape[0];
 | |
|   // transpose
 | |
|   std::vector<int64_t> dim{0, 2, 1};
 | |
|   FDTensor tensor_transpose;
 | |
|   function::Transpose(tensors[0], &tensor_transpose, dim);
 | |
| 
 | |
|   results->resize(batch);
 | |
| 
 | |
|   for (size_t bs = 0; bs < batch; ++bs) {
 | |
|     (*results)[bs].Clear();
 | |
|     if (multi_label_) {
 | |
|       (*results)[bs].Reserve(tensor_transpose.shape[1] *
 | |
|                              (tensor_transpose.shape[2] - 4));
 | |
|     } else {
 | |
|       (*results)[bs].Reserve(tensor_transpose.shape[1]);
 | |
|     }
 | |
|     if (tensor_transpose.dtype != FDDataType::FP32) {
 | |
|       FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|     const float* data =
 | |
|         reinterpret_cast<const float*>(tensor_transpose.Data()) +
 | |
|         bs * tensor_transpose.shape[1] * tensor_transpose.shape[2];
 | |
|     for (size_t i = 0; i < tensor_transpose.shape[1]; ++i) {
 | |
|       int s = i * tensor_transpose.shape[2];
 | |
|       if (multi_label_) {
 | |
|         for (size_t j = 4; j < tensor_transpose.shape[2]; ++j) {
 | |
|           float confidence = data[s + j];
 | |
|           // filter boxes by conf_threshold
 | |
|           if (confidence <= conf_threshold_) {
 | |
|             continue;
 | |
|           }
 | |
|           int32_t label_id = j - 4;
 | |
| 
 | |
|           // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|           (*results)[bs].boxes.emplace_back(std::array<float, 4>{
 | |
|               data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|               data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
 | |
|               data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|               data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
 | |
|           (*results)[bs].label_ids.push_back(label_id);
 | |
|           (*results)[bs].scores.push_back(confidence);
 | |
|         }
 | |
|       } else {
 | |
|         const float* max_class_score = std::max_element(
 | |
|             data + s + 4, data + s + tensor_transpose.shape[2]);
 | |
|         float confidence = *max_class_score;
 | |
|         // filter boxes by conf_threshold
 | |
|         if (confidence <= conf_threshold_) {
 | |
|           continue;
 | |
|         }
 | |
|         int32_t label_id = std::distance(data + s + 4, max_class_score);
 | |
|         // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|         (*results)[bs].boxes.emplace_back(std::array<float, 4>{
 | |
|             data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|             data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
 | |
|             data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|             data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
 | |
|         (*results)[bs].label_ids.push_back(label_id);
 | |
|         (*results)[bs].scores.push_back(confidence);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((*results)[bs].boxes.size() == 0) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     utils::NMS(&((*results)[bs]), nms_threshold_);
 | |
| 
 | |
|     // scale the boxes to the origin image shape
 | |
|     auto iter_out = ims_info[bs].find("output_shape");
 | |
|     auto iter_ipt = ims_info[bs].find("input_shape");
 | |
|     FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
 | |
|              "Cannot find input_shape or output_shape from im_info.");
 | |
|     float out_h = iter_out->second[0];
 | |
|     float out_w = iter_out->second[1];
 | |
|     float ipt_h = iter_ipt->second[0];
 | |
|     float ipt_w = iter_ipt->second[1];
 | |
|     float scale = std::min(out_h / ipt_h, out_w / ipt_w);
 | |
|     float pad_h = (out_h - ipt_h * scale) / 2;
 | |
|     float pad_w = (out_w - ipt_w * scale) / 2;
 | |
|     for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
 | |
|       int32_t label_id = ((*results)[bs].label_ids)[i];
 | |
|       // clip box
 | |
|       (*results)[bs].boxes[i][0] =
 | |
|           (*results)[bs].boxes[i][0] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][1] =
 | |
|           (*results)[bs].boxes[i][1] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][2] =
 | |
|           (*results)[bs].boxes[i][2] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][3] =
 | |
|           (*results)[bs].boxes[i][3] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][0] =
 | |
|           std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][1] =
 | |
|           std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][2] =
 | |
|           std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][3] =
 | |
|           std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
 | |
|       (*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
 | |
|       (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
 | |
|       (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |