mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 c8d6c8244e
			
		
	
	c8d6c8244e
	
	
	
		
			
			* add yolo cuda preprocessing * cmake build cuda src * yolov5 support cuda preprocessing * yolov5 cuda preprocessing configurable * yolov5 update get mat data api * yolov5 check cuda preprocess args * refactor cuda function name * yolo cuda preprocess padding value configurable * yolov5 release cuda memory * cuda preprocess pybind api update * move use_cuda_preprocessing option to yolov5 model * yolov5lite cuda preprocessing * yolov6 cuda preprocessing * yolov7 cuda preprocessing * yolov7_e2e cuda preprocessing * remove cuda preprocessing in runtime option * refine log and cmake variable name * fix model runtime ptr type Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			43 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/pybind/main.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| void BindYOLOv6(pybind11::module& m) {
 | |
|   pybind11::class_<vision::detection::YOLOv6, FastDeployModel>(m, "YOLOv6")
 | |
|       .def(pybind11::init<std::string, std::string, RuntimeOption,
 | |
|                           ModelFormat>())
 | |
|       .def("predict",
 | |
|            [](vision::detection::YOLOv6& self, pybind11::array& data,
 | |
|               float conf_threshold, float nms_iou_threshold) {
 | |
|              auto mat = PyArrayToCvMat(data);
 | |
|              vision::DetectionResult res;
 | |
|              self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
 | |
|              return res;
 | |
|            })
 | |
|       .def("use_cuda_preprocessing",
 | |
|            [](vision::detection::YOLOv6& self, int max_image_size) {
 | |
|              self.UseCudaPreprocessing(max_image_size);
 | |
|            })
 | |
|       .def_readwrite("size", &vision::detection::YOLOv6::size)
 | |
|       .def_readwrite("padding_value", &vision::detection::YOLOv6::padding_value)
 | |
|       .def_readwrite("is_mini_pad", &vision::detection::YOLOv6::is_mini_pad)
 | |
|       .def_readwrite("is_no_pad", &vision::detection::YOLOv6::is_no_pad)
 | |
|       .def_readwrite("is_scale_up", &vision::detection::YOLOv6::is_scale_up)
 | |
|       .def_readwrite("stride", &vision::detection::YOLOv6::stride)
 | |
|       .def_readwrite("max_wh", &vision::detection::YOLOv6::max_wh);
 | |
| }
 | |
| }  // namespace fastdeploy
 |