mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			77 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.  //NOLINT
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "fastdeploy/fastdeploy_model.h"
 | |
| #include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
 | |
| #include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| /*! @brief YOLOv5Seg model object used when to load a YOLOv5Seg model exported by YOLOv5.
 | |
|  */
 | |
| class FASTDEPLOY_DECL YOLOv5Seg : public FastDeployModel {
 | |
|  public:
 | |
|   /** \brief  Set path of model file and the configuration of runtime.
 | |
|    *
 | |
|    * \param[in] model_file Path of model file, e.g ./yolov5seg.onnx
 | |
|    * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
 | |
|    * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
 | |
|    * \param[in] model_format Model format of the loaded model, default is ONNX format
 | |
|    */
 | |
|   YOLOv5Seg(const std::string& model_file, const std::string& params_file = "",
 | |
|          const RuntimeOption& custom_option = RuntimeOption(),
 | |
|          const ModelFormat& model_format = ModelFormat::ONNX);
 | |
| 
 | |
|   std::string ModelName() const { return "yolov5seg"; }
 | |
| 
 | |
|   /** \brief Predict the detection result for an input image
 | |
|    *
 | |
|    * \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
 | |
|    * \param[in] result The output detection result will be writen to this structure
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool Predict(const cv::Mat& img, DetectionResult* result);
 | |
| 
 | |
|   /** \brief Predict the detection results for a batch of input images
 | |
|    *
 | |
|    * \param[in] imgs, The input image list, each element comes from cv::imread()
 | |
|    * \param[in] results The output detection result list
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
 | |
|                             std::vector<DetectionResult>* results);
 | |
| 
 | |
|   /// Get preprocessor reference of YOLOv5Seg
 | |
|   virtual YOLOv5SegPreprocessor& GetPreprocessor() {
 | |
|     return preprocessor_;
 | |
|   }
 | |
| 
 | |
|   /// Get postprocessor reference of YOLOv5Seg
 | |
|   virtual YOLOv5SegPostprocessor& GetPostprocessor() {
 | |
|     return postprocessor_;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   bool Initialize();
 | |
|   YOLOv5SegPreprocessor preprocessor_;
 | |
|   YOLOv5SegPostprocessor postprocessor_;
 | |
| };
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |