mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			117 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
 | |
| #include "fastdeploy/function/concat.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| 
 | |
| YOLOv5SegPreprocessor::YOLOv5SegPreprocessor() {
 | |
|   size_ = {640, 640};
 | |
|   padding_value_ = {114.0, 114.0, 114.0};
 | |
|   is_mini_pad_ = false;
 | |
|   is_no_pad_ = false;
 | |
|   is_scale_up_ = true;
 | |
|   stride_ = 32;
 | |
|   max_wh_ = 7680.0;
 | |
| }
 | |
| 
 | |
| void YOLOv5SegPreprocessor::LetterBox(FDMat* mat) {
 | |
|   float scale =
 | |
|       std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
 | |
|   if (!is_scale_up_) {
 | |
|     scale = std::min(scale, 1.0f);
 | |
|   }
 | |
| 
 | |
|   int resize_h = int(round(mat->Height() * scale));
 | |
|   int resize_w = int(round(mat->Width() * scale));
 | |
| 
 | |
|   int pad_w = size_[0] - resize_w;
 | |
|   int pad_h = size_[1] - resize_h;
 | |
|   if (is_mini_pad_) {
 | |
|     pad_h = pad_h % stride_;
 | |
|     pad_w = pad_w % stride_;
 | |
|   } else if (is_no_pad_) {
 | |
|     pad_h = 0;
 | |
|     pad_w = 0;
 | |
|     resize_h = size_[1];
 | |
|     resize_w = size_[0];
 | |
|   }
 | |
|   if (std::fabs(scale - 1.0f) > 1e-06) {
 | |
|     Resize::Run(mat, resize_w, resize_h);
 | |
|   }
 | |
|   if (pad_h > 0 || pad_w > 0) {
 | |
|     float half_h = pad_h * 1.0 / 2;
 | |
|     int top = int(round(half_h - 0.1));
 | |
|     int bottom = int(round(half_h + 0.1));
 | |
|     float half_w = pad_w * 1.0 / 2;
 | |
|     int left = int(round(half_w - 0.1));
 | |
|     int right = int(round(half_w + 0.1));
 | |
|     Pad::Run(mat, top, bottom, left, right, padding_value_);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool YOLOv5SegPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
 | |
|             std::map<std::string, std::array<float, 2>>* im_info) {
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   (*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
 | |
|                                static_cast<float>(mat->Width())};
 | |
|   // yolov5seg's preprocess steps
 | |
|   // 1. letterbox
 | |
|   // 2. convert_and_permute(swap_rb=true)
 | |
|   LetterBox(mat);
 | |
|   std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
 | |
|   std::vector<float> beta = {0.0f, 0.0f, 0.0f};
 | |
|   ConvertAndPermute::Run(mat, alpha, beta, true);
 | |
| 
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
 | |
|                                 static_cast<float>(mat->Width())};
 | |
| 
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->ExpandDim(0);  // reshape to n, h, w, c
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool YOLOv5SegPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
 | |
|                              std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
 | |
|   if (images->size() == 0) {
 | |
|     FDERROR << "The size of input images should be greater than 0." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   ims_info->resize(images->size());
 | |
|   outputs->resize(1);
 | |
|   // Concat all the preprocessed data to a batch tensor
 | |
|   std::vector<FDTensor> tensors(images->size()); 
 | |
|   for (size_t i = 0; i < images->size(); ++i) {
 | |
|     if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
 | |
|       FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (tensors.size() == 1) {
 | |
|     (*outputs)[0] = std::move(tensors[0]);
 | |
|   } else {
 | |
|     function::Concat(tensors, &((*outputs)[0]), 0);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |