mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			218 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| 
 | |
| YOLOv5SegPostprocessor::YOLOv5SegPostprocessor() {
 | |
|   conf_threshold_ = 0.25;
 | |
|   nms_threshold_ = 0.5;
 | |
|   mask_threshold_ = 0.5;
 | |
|   multi_label_ = true;
 | |
|   max_wh_ = 7680.0;
 | |
|   mask_nums_ = 32;
 | |
| }
 | |
| 
 | |
| bool YOLOv5SegPostprocessor::Run(
 | |
|     const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
 | |
|     const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
 | |
|   int batch = tensors[0].shape[0];
 | |
| 
 | |
|   results->resize(batch);
 | |
| 
 | |
|   for (size_t bs = 0; bs < batch; ++bs) {
 | |
|     // store mask information
 | |
|     std::vector<std::vector<float>> mask_embeddings;
 | |
|     (*results)[bs].Clear();
 | |
|     if (multi_label_) {
 | |
|       (*results)[bs].Reserve(tensors[0].shape[1] *
 | |
|                              (tensors[0].shape[2] - mask_nums_ - 5));
 | |
|     } else {
 | |
|       (*results)[bs].Reserve(tensors[0].shape[1]);
 | |
|     }
 | |
|     if (tensors[0].dtype != FDDataType::FP32) {
 | |
|       FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|     const float* data = reinterpret_cast<const float*>(tensors[0].Data()) +
 | |
|                         bs * tensors[0].shape[1] * tensors[0].shape[2];
 | |
|     for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
 | |
|       int s = i * tensors[0].shape[2];
 | |
|       float cls_conf = data[s + 4];
 | |
|       float confidence = data[s + 4];
 | |
|       std::vector<float> mask_embedding(
 | |
|           data + s + tensors[0].shape[2] - mask_nums_,
 | |
|           data + s + tensors[0].shape[2]);
 | |
|       for (size_t k = 0; k < mask_embedding.size(); ++k) {
 | |
|         mask_embedding[k] *= cls_conf;
 | |
|       }
 | |
|       if (multi_label_) {
 | |
|         for (size_t j = 5; j < tensors[0].shape[2] - mask_nums_; ++j) {
 | |
|           confidence = data[s + 4];
 | |
|           const float* class_score = data + s + j;
 | |
|           confidence *= (*class_score);
 | |
|           // filter boxes by conf_threshold
 | |
|           if (confidence <= conf_threshold_) {
 | |
|             continue;
 | |
|           }
 | |
|           int32_t label_id = std::distance(data + s + 5, class_score);
 | |
| 
 | |
|           // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|           (*results)[bs].boxes.emplace_back(std::array<float, 4>{
 | |
|               data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|               data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
 | |
|               data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|               data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
 | |
|           (*results)[bs].label_ids.push_back(label_id);
 | |
|           (*results)[bs].scores.push_back(confidence);
 | |
|           // TODO(wangjunjie06): No zero copy
 | |
|           mask_embeddings.push_back(mask_embedding);
 | |
|         }
 | |
|       } else {
 | |
|         const float* max_class_score = std::max_element(
 | |
|             data + s + 5, data + s + tensors[0].shape[2] - mask_nums_);
 | |
|         confidence *= (*max_class_score);
 | |
|         // filter boxes by conf_threshold
 | |
|         if (confidence <= conf_threshold_) {
 | |
|           continue;
 | |
|         }
 | |
|         int32_t label_id = std::distance(data + s + 5, max_class_score);
 | |
|         // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|         (*results)[bs].boxes.emplace_back(std::array<float, 4>{
 | |
|             data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|             data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
 | |
|             data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
 | |
|             data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
 | |
|         (*results)[bs].label_ids.push_back(label_id);
 | |
|         (*results)[bs].scores.push_back(confidence);
 | |
|         mask_embeddings.push_back(mask_embedding);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((*results)[bs].boxes.size() == 0) {
 | |
|       return true;
 | |
|     }
 | |
|     // get box index after nms
 | |
|     std::vector<int> index;
 | |
|     utils::NMS(&((*results)[bs]), nms_threshold_, &index);
 | |
| 
 | |
|     // deal with mask
 | |
|     // step1: MatMul, (box_nums * 32) x (32 * 160 * 160) = box_nums * 160 * 160
 | |
|     // step2: Sigmoid
 | |
|     // step3: Resize to original image size
 | |
|     // step4: Select pixels greater than threshold and crop
 | |
|     (*results)[bs].contain_masks = true;
 | |
|     (*results)[bs].masks.resize((*results)[bs].boxes.size());
 | |
|     const float* data_mask =
 | |
|         reinterpret_cast<const float*>(tensors[1].Data()) +
 | |
|         bs * tensors[1].shape[1] * tensors[1].shape[2] * tensors[1].shape[3];
 | |
|     cv::Mat mask_proto =
 | |
|         cv::Mat(tensors[1].shape[1], tensors[1].shape[2] * tensors[1].shape[3],
 | |
|                 CV_32FC(1), const_cast<float*>(data_mask));
 | |
|     // vector to cv::Mat for MatMul
 | |
|     // after push_back, Mat of m*n becomes (m + 1) * n
 | |
|     cv::Mat mask_proposals;
 | |
|     for (size_t i = 0; i < index.size(); ++i) {
 | |
|       mask_proposals.push_back(cv::Mat(mask_embeddings[index[i]]).t());
 | |
|     }
 | |
|     cv::Mat matmul_result = (mask_proposals * mask_proto).t();
 | |
|     cv::Mat masks = matmul_result.reshape(
 | |
|         (*results)[bs].boxes.size(), {static_cast<int>(tensors[1].shape[2]),
 | |
|                                       static_cast<int>(tensors[1].shape[3])});
 | |
|     // split for boxes nums
 | |
|     std::vector<cv::Mat> mask_channels;
 | |
|     cv::split(masks, mask_channels);
 | |
| 
 | |
|     // scale the boxes to the origin image shape
 | |
|     auto iter_out = ims_info[bs].find("output_shape");
 | |
|     auto iter_ipt = ims_info[bs].find("input_shape");
 | |
|     FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
 | |
|              "Cannot find input_shape or output_shape from im_info.");
 | |
|     float out_h = iter_out->second[0];
 | |
|     float out_w = iter_out->second[1];
 | |
|     float ipt_h = iter_ipt->second[0];
 | |
|     float ipt_w = iter_ipt->second[1];
 | |
|     float scale = std::min(out_h / ipt_h, out_w / ipt_w);
 | |
|     float pad_h = (out_h - ipt_h * scale) / 2;
 | |
|     float pad_w = (out_w - ipt_w * scale) / 2;
 | |
|     // for mask
 | |
|     float pad_h_mask = (float)pad_h / out_h * tensors[1].shape[2];
 | |
|     float pad_w_mask = (float)pad_w / out_w * tensors[1].shape[3];
 | |
|     for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
 | |
|       int32_t label_id = ((*results)[bs].label_ids)[i];
 | |
|       // clip box
 | |
|       (*results)[bs].boxes[i][0] =
 | |
|           (*results)[bs].boxes[i][0] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][1] =
 | |
|           (*results)[bs].boxes[i][1] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][2] =
 | |
|           (*results)[bs].boxes[i][2] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][3] =
 | |
|           (*results)[bs].boxes[i][3] - max_wh_ * label_id;
 | |
|       (*results)[bs].boxes[i][0] =
 | |
|           std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][1] =
 | |
|           std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][2] =
 | |
|           std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][3] =
 | |
|           std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
 | |
|       (*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
 | |
|       (*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
 | |
|       (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
 | |
|       (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
 | |
|       // deal with mask
 | |
|       cv::Mat dest, mask;
 | |
|       // sigmoid
 | |
|       cv::exp(-mask_channels[i], dest);
 | |
|       dest = 1.0 / (1.0 + dest);
 | |
|       // crop mask for feature map
 | |
|       int x1 = static_cast<int>(pad_w_mask);
 | |
|       int y1 = static_cast<int>(pad_h_mask);
 | |
|       int x2 = static_cast<int>(tensors[1].shape[3] - pad_w_mask);
 | |
|       int y2 = static_cast<int>(tensors[1].shape[2] - pad_h_mask);
 | |
|       cv::Rect roi(x1, y1, x2 - x1, y2 - y1);
 | |
|       dest = dest(roi);
 | |
|       cv::resize(dest, mask, cv::Size(ipt_w, ipt_h), 0, 0, cv::INTER_LINEAR);
 | |
|       // crop mask for source img
 | |
|       int x1_src = static_cast<int>(round((*results)[bs].boxes[i][0]));
 | |
|       int y1_src = static_cast<int>(round((*results)[bs].boxes[i][1]));
 | |
|       int x2_src = static_cast<int>(round((*results)[bs].boxes[i][2]));
 | |
|       int y2_src = static_cast<int>(round((*results)[bs].boxes[i][3]));
 | |
|       cv::Rect roi_src(x1_src, y1_src, x2_src - x1_src, y2_src - y1_src);
 | |
|       mask = mask(roi_src);
 | |
|       mask = mask > mask_threshold_;
 | |
|       // save mask in DetectionResult
 | |
|       int keep_mask_h = y2_src - y1_src;
 | |
|       int keep_mask_w = x2_src - x1_src;
 | |
|       int keep_mask_numel = keep_mask_h * keep_mask_w;
 | |
|       (*results)[bs].masks[i].Resize(keep_mask_numel);
 | |
|       (*results)[bs].masks[i].shape = {keep_mask_h, keep_mask_w};
 | |
|       uint8_t* keep_mask_ptr =
 | |
|           reinterpret_cast<uint8_t*>((*results)[bs].masks[i].Data());
 | |
|       std::memcpy(keep_mask_ptr, reinterpret_cast<uint8_t*>(mask.ptr()),
 | |
|                   keep_mask_numel * sizeof(uint8_t));
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |