mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			338 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/contrib/nanodet_plus.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| namespace vision {
 | |
| 
 | |
| namespace detection {
 | |
| 
 | |
| struct NanoDetPlusCenterPoint {
 | |
|   int grid0;
 | |
|   int grid1;
 | |
|   int stride;
 | |
| };
 | |
| 
 | |
| void GenerateNanoDetPlusCenterPoints(
 | |
|     const std::vector<int>& size, const std::vector<int>& downsample_strides,
 | |
|     std::vector<NanoDetPlusCenterPoint>* center_points) {
 | |
|   // size: tuple of input (width, height), e.g (320, 320)
 | |
|   // downsample_strides: downsample strides in NanoDet and
 | |
|   // NanoDet-Plus, e.g (8, 16, 32, 64)
 | |
|   const int width = size[0];
 | |
|   const int height = size[1];
 | |
|   for (const auto& ds : downsample_strides) {
 | |
|     int num_grid_w = width / ds;
 | |
|     int num_grid_h = height / ds;
 | |
|     for (int g1 = 0; g1 < num_grid_h; ++g1) {
 | |
|       for (int g0 = 0; g0 < num_grid_w; ++g0) {
 | |
|         (*center_points).emplace_back(NanoDetPlusCenterPoint{g0, g1, ds});
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WrapAndResize(Mat* mat, std::vector<int> size, std::vector<float> color,
 | |
|                    bool keep_ratio = false) {
 | |
|   // Reference: nanodet/data/transform/warp.py#L139
 | |
|   // size: tuple of input (width, height)
 | |
|   // The default value of `keep_ratio` is `fasle` in
 | |
|   // `config/nanodet-plus-m-1.5x_320.yml` for both
 | |
|   // train and val processes. So, we just let this
 | |
|   // option default `false` according to the official
 | |
|   // implementation in NanoDet and NanoDet-Plus.
 | |
|   // Note, this function will apply a normal resize
 | |
|   // operation to input Mat if the keep_ratio option
 | |
|   // is fasle and the behavior will be the same as
 | |
|   // yolov5's letterbox if keep_ratio is true.
 | |
| 
 | |
|   // with keep_ratio = false (default)
 | |
|   if (!keep_ratio) {
 | |
|     int resize_h = size[1];
 | |
|     int resize_w = size[0];
 | |
|     if (resize_h != mat->Height() || resize_w != mat->Width()) {
 | |
|       Resize::Run(mat, resize_w, resize_h);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   // with keep_ratio = true, same as yolov5's letterbox
 | |
|   float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
 | |
|                      size[0] * 1.0f / static_cast<float>(mat->Width()));
 | |
| 
 | |
|   int resize_h = int(round(static_cast<float>(mat->Height()) * r));
 | |
|   int resize_w = int(round(static_cast<float>(mat->Width()) * r));
 | |
| 
 | |
|   if (resize_h != mat->Height() || resize_w != mat->Width()) {
 | |
|     Resize::Run(mat, resize_w, resize_h);
 | |
|   }
 | |
| 
 | |
|   int pad_w = size[0] - resize_w;
 | |
|   int pad_h = size[1] - resize_h;
 | |
|   if (pad_h > 0 || pad_w > 0) {
 | |
|     float half_h = pad_h * 1.0 / 2;
 | |
|     int top = int(round(half_h - 0.1));
 | |
|     int bottom = int(round(half_h + 0.1));
 | |
|     float half_w = pad_w * 1.0 / 2;
 | |
|     int left = int(round(half_w - 0.1));
 | |
|     int right = int(round(half_w + 0.1));
 | |
|     Pad::Run(mat, top, bottom, left, right, color);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void GFLRegression(const float* logits, size_t reg_num, float* offset) {
 | |
|   // Hint: reg_num = reg_max + 1
 | |
|   FDASSERT(((nullptr != logits) && (reg_num != 0)),
 | |
|            "NanoDetPlus: logits is nullptr or reg_num is 0 in GFLRegression.");
 | |
|   // softmax
 | |
|   float total_exp = 0.f;
 | |
|   std::vector<float> softmax_probs(reg_num);
 | |
|   for (size_t i = 0; i < reg_num; ++i) {
 | |
|     softmax_probs[i] = std::exp(logits[i]);
 | |
|     total_exp += softmax_probs[i];
 | |
|   }
 | |
|   for (size_t i = 0; i < reg_num; ++i) {
 | |
|     softmax_probs[i] = softmax_probs[i] / total_exp;
 | |
|   }
 | |
|   // gfl regression -> offset
 | |
|   for (size_t i = 0; i < reg_num; ++i) {
 | |
|     (*offset) += static_cast<float>(i) * softmax_probs[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| NanoDetPlus::NanoDetPlus(const std::string& model_file,
 | |
|                          const std::string& params_file,
 | |
|                          const RuntimeOption& custom_option,
 | |
|                          const ModelFormat& model_format) {
 | |
|   if (model_format == ModelFormat::ONNX) {
 | |
|     valid_cpu_backends = {Backend::ORT}; 
 | |
|     valid_gpu_backends = {Backend::ORT, Backend::TRT};  
 | |
|   } else {
 | |
|     valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
 | |
|     valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|   }
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool NanoDetPlus::Initialize() {
 | |
|   // parameters for preprocess
 | |
|   size = {320, 320};
 | |
|   padding_value = {0.0f, 0.0f, 0.0f};
 | |
|   keep_ratio = false;
 | |
|   downsample_strides = {8, 16, 32, 64};
 | |
|   max_wh = 4096.0f;
 | |
|   reg_max = 7;
 | |
| 
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   // Check if the input shape is dynamic after Runtime already initialized.
 | |
|   is_dynamic_input_ = false;
 | |
|   auto shape = InputInfoOfRuntime(0).shape;
 | |
|   for (int i = 0; i < shape.size(); ++i) {
 | |
|     // if height or width is dynamic
 | |
|     if (i >= 2 && shape[i] <= 0) {
 | |
|       is_dynamic_input_ = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool NanoDetPlus::Preprocess(
 | |
|     Mat* mat, FDTensor* output,
 | |
|     std::map<std::string, std::array<float, 2>>* im_info) {
 | |
|   // NanoDet-Plus preprocess steps
 | |
|   // 1. WrapAndResize
 | |
|   // 2. HWC->CHW
 | |
|   // 3. Normalize or Convert (keep BGR order)
 | |
|   WrapAndResize(mat, size, padding_value, keep_ratio);
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
 | |
|                                 static_cast<float>(mat->Width())};
 | |
| 
 | |
|   // Compute `result = mat * alpha + beta` directly by channel
 | |
|   // Reference: /config/nanodet-plus-m-1.5x_320.yml#L89
 | |
|   // from mean: [103.53, 116.28, 123.675], std: [57.375, 57.12, 58.395]
 | |
|   // x' = (x - mean) / std to x'= x * alpha + beta.
 | |
|   // e.g alpha[0] = 0.017429f = 1.0f / 57.375f
 | |
|   // e.g beta[0] = -103.53f * 0.0174291f
 | |
|   std::vector<float> alpha = {0.017429f, 0.017507f, 0.017125f};
 | |
|   std::vector<float> beta = {-103.53f * 0.0174291f, -116.28f * 0.0175070f,
 | |
|                              -123.675f * 0.0171247f};  // BGR order
 | |
|   Convert::Run(mat, alpha, beta);
 | |
| 
 | |
|   HWC2CHW::Run(mat);
 | |
|   Cast::Run(mat, "float");
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);  // reshape to n, h, w, c
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool NanoDetPlus::Postprocess(
 | |
|     FDTensor& infer_result, DetectionResult* result,
 | |
|     const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|     float conf_threshold, float nms_iou_threshold) {
 | |
|   FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
 | |
|   result->Clear();
 | |
|   result->Reserve(infer_result.shape[1]);
 | |
|   if (infer_result.dtype != FDDataType::FP32) {
 | |
|     FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   // generate center points with dowmsample strides
 | |
|   std::vector<NanoDetPlusCenterPoint> center_points;
 | |
|   GenerateNanoDetPlusCenterPoints(size, downsample_strides, ¢er_points);
 | |
| 
 | |
|   // infer_result shape might look like (1,2125,112)
 | |
|   const int num_cls_reg = infer_result.shape[2];            // e.g 112
 | |
|   const int num_classes = num_cls_reg - (reg_max + 1) * 4;  // e.g 80
 | |
|   float* data = static_cast<float*>(infer_result.Data());
 | |
|   for (size_t i = 0; i < infer_result.shape[1]; ++i) {
 | |
|     float* scores = data + i * num_cls_reg;
 | |
|     float* max_class_score = std::max_element(scores, scores + num_classes);
 | |
|     float confidence = (*max_class_score);
 | |
|     // filter boxes by conf_threshold
 | |
|     if (confidence <= conf_threshold) {
 | |
|       continue;
 | |
|     }
 | |
|     int32_t label_id = std::distance(scores, max_class_score);
 | |
|     // fetch i-th center point
 | |
|     float grid0 = static_cast<float>(center_points.at(i).grid0);
 | |
|     float grid1 = static_cast<float>(center_points.at(i).grid1);
 | |
|     float downsample_stride = static_cast<float>(center_points.at(i).stride);
 | |
|     // apply gfl regression to get offsets (l,t,r,b)
 | |
|     float* logits = data + i * num_cls_reg + num_classes;  // 32|44...
 | |
|     std::vector<float> offsets(4);
 | |
|     for (size_t j = 0; j < 4; ++j) {
 | |
|       GFLRegression(logits + j * (reg_max + 1), reg_max + 1, &offsets[j]);
 | |
|     }
 | |
|     // convert from offsets to [x1, y1, x2, y2]
 | |
|     float l = offsets[0];  // left
 | |
|     float t = offsets[1];  // top
 | |
|     float r = offsets[2];  // right
 | |
|     float b = offsets[3];  // bottom
 | |
| 
 | |
|     float x1 = (grid0 - l) * downsample_stride;  // cx - l x1
 | |
|     float y1 = (grid1 - t) * downsample_stride;  // cy - t y1
 | |
|     float x2 = (grid0 + r) * downsample_stride;  // cx + r x2
 | |
|     float y2 = (grid1 + b) * downsample_stride;  // cy + b y2
 | |
| 
 | |
|     result->boxes.emplace_back(
 | |
|         std::array<float, 4>{x1 + label_id * max_wh, y1 + label_id * max_wh,
 | |
|                              x2 + label_id * max_wh, y2 + label_id * max_wh});
 | |
|     // label_id * max_wh for multi classes NMS
 | |
|     result->label_ids.push_back(label_id);
 | |
|     result->scores.push_back(confidence);
 | |
|   }
 | |
|   utils::NMS(result, nms_iou_threshold);
 | |
| 
 | |
|   // scale the boxes to the origin image shape
 | |
|   auto iter_out = im_info.find("output_shape");
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
 | |
|            "Cannot find input_shape or output_shape from im_info.");
 | |
|   float out_h = iter_out->second[0];
 | |
|   float out_w = iter_out->second[1];
 | |
|   float ipt_h = iter_ipt->second[0];
 | |
|   float ipt_w = iter_ipt->second[1];
 | |
|   // without keep_ratio
 | |
|   if (!keep_ratio) {
 | |
|     // x' = (x / out_w) * ipt_w = x / (out_w / ipt_w)
 | |
|     // y' = (y / out_h) * ipt_h = y / (out_h / ipt_h)
 | |
|     float r_w = out_w / ipt_w;
 | |
|     float r_h = out_h / ipt_h;
 | |
|     for (size_t i = 0; i < result->boxes.size(); ++i) {
 | |
|       int32_t label_id = (result->label_ids)[i];
 | |
|       // clip box
 | |
|       result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
 | |
|       result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
 | |
|       result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
 | |
|       result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
 | |
|       result->boxes[i][0] = std::max(result->boxes[i][0] / r_w, 0.0f);
 | |
|       result->boxes[i][1] = std::max(result->boxes[i][1] / r_h, 0.0f);
 | |
|       result->boxes[i][2] = std::max(result->boxes[i][2] / r_w, 0.0f);
 | |
|       result->boxes[i][3] = std::max(result->boxes[i][3] / r_h, 0.0f);
 | |
|       result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
 | |
|       result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
 | |
|       result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
 | |
|       result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   // with keep_ratio
 | |
|   float r = std::min(out_h / ipt_h, out_w / ipt_w);
 | |
|   float pad_h = (out_h - ipt_h * r) / 2;
 | |
|   float pad_w = (out_w - ipt_w * r) / 2;
 | |
|   for (size_t i = 0; i < result->boxes.size(); ++i) {
 | |
|     int32_t label_id = (result->label_ids)[i];
 | |
|     // clip box
 | |
|     result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
 | |
|     result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
 | |
|     result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
 | |
|     result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
 | |
|     result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / r, 0.0f);
 | |
|     result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / r, 0.0f);
 | |
|     result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / r, 0.0f);
 | |
|     result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / r, 0.0f);
 | |
|     result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
 | |
|     result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
 | |
|     result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
 | |
|     result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
 | |
|                           float conf_threshold, float nms_iou_threshold) {
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> input_tensors(1);
 | |
| 
 | |
|   std::map<std::string, std::array<float, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<float>(mat.Height()),
 | |
|                             static_cast<float>(mat.Width())};
 | |
|   im_info["output_shape"] = {static_cast<float>(mat.Height()),
 | |
|                              static_cast<float>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
 | |
|     FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   input_tensors[0].name = InputInfoOfRuntime(0).name;
 | |
|   std::vector<FDTensor> output_tensors;
 | |
|   if (!Infer(input_tensors, &output_tensors)) {
 | |
|     FDERROR << "Failed to inference." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
 | |
|                    nms_iou_threshold)) {
 | |
|     FDERROR << "Failed to post process." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
