mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 866d044898
			
		
	
	866d044898
	
	
	
		
			
			* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
		
			
				
	
	
		
			133 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| 
 | |
| FastestDetPostprocessor::FastestDetPostprocessor() {
 | |
|   conf_threshold_ = 0.65;
 | |
|   nms_threshold_ = 0.45;
 | |
| }
 | |
| float FastestDetPostprocessor::Sigmoid(float x) {
 | |
|   return 1.0f / (1.0f + exp(-x));
 | |
| }
 | |
| 
 | |
| float FastestDetPostprocessor::Tanh(float x) {
 | |
|   return 2.0f / (1.0f + exp(-2 * x)) - 1;
 | |
| }
 | |
| 
 | |
| bool FastestDetPostprocessor::Run(
 | |
|     const std::vector<FDTensor> &tensors, std::vector<DetectionResult> *results,
 | |
|     const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
 | |
|   int batch = 1;
 | |
| 
 | |
|   results->resize(batch);
 | |
| 
 | |
|   for (size_t bs = 0; bs < batch; ++bs) {
 | |
| 
 | |
|     (*results)[bs].Clear();
 | |
|     // output (1,85,22,22) CHW
 | |
|     const float* output = reinterpret_cast<const float*>(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2] * tensors[0].shape[3];
 | |
|     int output_h = tensors[0].shape[2]; // out map height
 | |
|     int output_w = tensors[0].shape[3]; // out map weight
 | |
|     auto iter_out = ims_info[bs].find("output_shape");
 | |
|     auto iter_ipt = ims_info[bs].find("input_shape");
 | |
|     FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
 | |
|              "Cannot find input_shape or output_shape from im_info.");
 | |
|     float ipt_h = iter_ipt->second[0];
 | |
|     float ipt_w = iter_ipt->second[1];
 | |
| 
 | |
|     // handle output boxes from out map
 | |
|     for (int h = 0; h < output_h; h++) {
 | |
|       for (int w = 0; w < output_w; w++) {
 | |
|         // object score
 | |
|         int obj_score_index = (h * output_w) + w;
 | |
|         float obj_score = output[obj_score_index];
 | |
| 
 | |
|         // find max class
 | |
|         int category = 0;
 | |
|         float max_score = 0.0f;
 | |
|         int class_num = tensors[0].shape[1]-5;
 | |
|         for (size_t i = 0; i < class_num; i++) {
 | |
|           obj_score_index =((5 + i) * output_h * output_w) + (h * output_w) + w;
 | |
|           float cls_score = output[obj_score_index];
 | |
|           if (cls_score > max_score) {
 | |
|             max_score = cls_score;
 | |
|             category = i;
 | |
|           }
 | |
|         }
 | |
|         float score = pow(max_score, 0.4) * pow(obj_score, 0.6);
 | |
| 
 | |
|         // score threshold
 | |
|         if (score <= conf_threshold_) {
 | |
|           continue;
 | |
|         }
 | |
|         if (score > conf_threshold_) {
 | |
|           // handle box x y w h
 | |
|           int x_offset_index = (1 * output_h * output_w) + (h * output_w) + w;
 | |
|           int y_offset_index = (2 * output_h * output_w) + (h * output_w) + w;
 | |
|           int box_width_index = (3 * output_h * output_w) + (h * output_w) + w;
 | |
|           int box_height_index = (4 * output_h * output_w) + (h * output_w) + w;
 | |
| 
 | |
|           float x_offset = Tanh(output[x_offset_index]);
 | |
|           float y_offset = Tanh(output[y_offset_index]);
 | |
|           float box_width = Sigmoid(output[box_width_index]);
 | |
|           float box_height = Sigmoid(output[box_height_index]);
 | |
| 
 | |
|           float cx = (w + x_offset) / output_w;
 | |
|           float cy = (h + y_offset) / output_h;
 | |
| 
 | |
|           // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|           (*results)[bs].boxes.emplace_back(std::array<float, 4>{
 | |
|             cx - box_width / 2.0f,
 | |
|             cy - box_height / 2.0f,
 | |
|             cx + box_width / 2.0f,
 | |
|             cy + box_height / 2.0f});
 | |
|           (*results)[bs].label_ids.push_back(category);
 | |
|           (*results)[bs].scores.push_back(score);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if ((*results)[bs].boxes.size() == 0) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // scale boxes to origin shape
 | |
|     for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
 | |
|       (*results)[bs].boxes[i][0] = ((*results)[bs].boxes[i][0]) * ipt_w;
 | |
|       (*results)[bs].boxes[i][1] = ((*results)[bs].boxes[i][1]) * ipt_h;
 | |
|       (*results)[bs].boxes[i][2] = ((*results)[bs].boxes[i][2]) * ipt_w;
 | |
|       (*results)[bs].boxes[i][3] = ((*results)[bs].boxes[i][3]) * ipt_h;
 | |
|     }
 | |
|     //NMS
 | |
|     utils::NMS(&((*results)[bs]), nms_threshold_);
 | |
|     //clip box
 | |
|     for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
 | |
|       (*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0], 0.0f);
 | |
|       (*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1], 0.0f);
 | |
|       (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
 | |
|       (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| } // namespace detection
 | |
| } // namespace vision
 | |
| } // namespace fastdeploy
 |