mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 866d044898
			
		
	
	866d044898
	
	
	
		
			
			* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
		
			
				
	
	
		
			86 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/pybind/main.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| void BindFastestDet(pybind11::module& m) {
 | |
|   pybind11::class_<vision::detection::FastestDetPreprocessor>(
 | |
|       m, "FastestDetPreprocessor")
 | |
|       .def(pybind11::init<>())
 | |
|       .def("run", [](vision::detection::FastestDetPreprocessor& self, std::vector<pybind11::array>& im_list) {
 | |
|         std::vector<vision::FDMat> images;
 | |
|         for (size_t i = 0; i < im_list.size(); ++i) {
 | |
|           images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
 | |
|         }
 | |
|         std::vector<FDTensor> outputs;
 | |
|         std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
 | |
|         if (!self.Run(&images, &outputs, &ims_info)) {
 | |
|           throw std::runtime_error("raise Exception('Failed to preprocess the input data in FastestDetPreprocessor.')");
 | |
|         }
 | |
|         for (size_t i = 0; i < outputs.size(); ++i) {
 | |
|           outputs[i].StopSharing();
 | |
|         }
 | |
|         return make_pair(outputs, ims_info);
 | |
|       })
 | |
|       .def_property("size", &vision::detection::FastestDetPreprocessor::GetSize, &vision::detection::FastestDetPreprocessor::SetSize);
 | |
| 
 | |
|   pybind11::class_<vision::detection::FastestDetPostprocessor>(
 | |
|       m, "FastestDetPostprocessor")
 | |
|       .def(pybind11::init<>())
 | |
|       .def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector<FDTensor>& inputs,
 | |
|                      const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
 | |
|         std::vector<vision::DetectionResult> results;
 | |
|         if (!self.Run(inputs, &results, ims_info)) {
 | |
|           throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
 | |
|         }
 | |
|         return results;
 | |
|       })
 | |
|       .def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector<pybind11::array>& input_array,
 | |
|                      const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
 | |
|         std::vector<vision::DetectionResult> results;
 | |
|         std::vector<FDTensor> inputs;
 | |
|         PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
 | |
|         if (!self.Run(inputs, &results, ims_info)) {
 | |
|           throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
 | |
|         }
 | |
|         return results;
 | |
|       })
 | |
|       .def_property("conf_threshold", &vision::detection::FastestDetPostprocessor::GetConfThreshold, &vision::detection::FastestDetPostprocessor::SetConfThreshold)
 | |
|       .def_property("nms_threshold", &vision::detection::FastestDetPostprocessor::GetNMSThreshold, &vision::detection::FastestDetPostprocessor::SetNMSThreshold);
 | |
| 
 | |
|   pybind11::class_<vision::detection::FastestDet, FastDeployModel>(m, "FastestDet")
 | |
|       .def(pybind11::init<std::string, std::string, RuntimeOption,
 | |
|                           ModelFormat>())
 | |
|       .def("predict",
 | |
|            [](vision::detection::FastestDet& self, pybind11::array& data) {
 | |
|              auto mat = PyArrayToCvMat(data);
 | |
|              vision::DetectionResult res;
 | |
|              self.Predict(mat, &res);
 | |
|              return res;
 | |
|            })
 | |
|       .def("batch_predict", [](vision::detection::FastestDet& self, std::vector<pybind11::array>& data) {
 | |
|         std::vector<cv::Mat> images;
 | |
|         for (size_t i = 0; i < data.size(); ++i) {
 | |
|           images.push_back(PyArrayToCvMat(data[i]));
 | |
|         }
 | |
|         std::vector<vision::DetectionResult> results;
 | |
|         self.BatchPredict(images, &results);
 | |
|         return results;
 | |
|       })
 | |
|       .def_property_readonly("preprocessor", &vision::detection::FastestDet::GetPreprocessor)
 | |
|       .def_property_readonly("postprocessor", &vision::detection::FastestDet::GetPostprocessor);
 | |
| }
 | |
| }  // namespace fastdeploy
 |