Files
FastDeploy/tools/deep_gemm_pre-compile/generate_config.py
GoldPancake 79c2c52756
Some checks are pending
CE Compile Job / ce_job_pre_check (push) Waiting to run
CE Compile Job / print_ce_job_pre_check_outputs (push) Blocked by required conditions
CE Compile Job / FD-Clone-Linux (push) Blocked by required conditions
CE Compile Job / Show Code Archive Output (push) Blocked by required conditions
CE Compile Job / BUILD_SM8090 (push) Blocked by required conditions
CE Compile Job / BUILD_SM8689 (push) Blocked by required conditions
CE Compile Job / CE_UPLOAD (push) Blocked by required conditions
Deploy GitHub Pages / deploy (push) Waiting to run
deepgemm pre-compile tool support mixed parallel (#4282)
2025-09-26 18:43:39 +08:00

206 lines
7.3 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import math
import os
from typing import List, Tuple
from fastdeploy.model_executor.ops.gpu.deep_gemm.jit_kernels.gemm import get_smem_config
logger = logging.getLogger(__name__)
console_handler = logging.StreamHandler()
logger.addHandler(console_handler)
logger.setLevel(os.getenv("PRE_COMPILE_LOG_LEVEL", "INFO"))
def generate_kn_pairs(args, model_cfg: dict) -> Tuple[List, List, List]:
hidden_size = model_cfg["hidden_size"]
intermediate_size = model_cfg["intermediate_size"]
moe_intermediate_size = model_cfg["moe_intermediate_size"]
num_attention_heads = model_cfg["num_attention_heads"]
num_key_value_heads = model_cfg["num_key_value_heads"]
head_dim = int(hidden_size / num_attention_heads)
tp_size = args.tensor_parallel_size
ep_size = args.expert_parallel_size
has_shared_experts = args.has_shared_experts.lower() == "true"
gemm_kn_pairs = []
grouped_gemm_contiguous_kn_pairs = []
grouped_gemm_masked_kn_pairs = []
logger.debug("Generating kn pairs for tensor parallel.")
# Dense normal gemm
gemm_kn_pairs.extend(
[
[int(intermediate_size / tp_size), hidden_size],
[hidden_size, int(head_dim * (num_attention_heads + num_key_value_heads * 2) / tp_size)],
[hidden_size, int(intermediate_size * 2 / tp_size)],
[int(hidden_size / tp_size), hidden_size],
]
)
# Moe grouped gemm contiguous
grouped_gemm_contiguous_kn_pairs.extend(
[
[int(moe_intermediate_size / tp_size), hidden_size],
[hidden_size, int(moe_intermediate_size * 2 / tp_size)],
]
)
if ep_size > 1:
# Moe grouped gemm masked
grouped_gemm_masked_kn_pairs.extend(
[
[moe_intermediate_size, hidden_size],
[hidden_size, int(moe_intermediate_size * 2)],
]
)
if has_shared_experts:
logger.debug("Generating kn pairs for models with shared experts.")
gemm_kn_pairs.extend(
[
[hidden_size, int(moe_intermediate_size * 4 / tp_size)],
[int(moe_intermediate_size * 2 / tp_size), hidden_size],
]
)
return (
gemm_kn_pairs,
grouped_gemm_contiguous_kn_pairs,
grouped_gemm_masked_kn_pairs,
)
def generate_json(
kn_pairs: list,
moe_num_experts: int,
output_path: str,
is_grouped_contiguous: bool = False,
is_grouped_masked: bool = False,
):
if not is_grouped_contiguous:
BLOCK_MS = [64, 128, 256]
else:
BLOCK_MS = [128]
BLOCK_NS = list(range(16, 129, 8)) + [144, 160]
TMA_MULTICAST_CONFIGS = [(1, True), (1, False), (2, True), (2, False)]
counter = 0
with open(output_path, "a+", encoding="utf-8") as f:
for block_m in BLOCK_MS:
# NOTES: the block sizes can not be too large, so at least one dim less than 128
for block_n in filter(lambda bn: block_m <= 128 or bn <= 128, BLOCK_NS):
if 128 % block_n != 0 and 128 // math.gcd(128, block_n) <= 4:
NUM_STAGES = [4, 3]
else:
NUM_STAGES = [8, 7, 6, 5, 4, 3]
for num_stages in NUM_STAGES:
for kn_pair in kn_pairs:
smem_config = get_smem_config(num_stages, kn_pair[0], block_m, block_n)
for tma_multicast_config in TMA_MULTICAST_CONFIGS:
cfg = {
"N": kn_pair[1],
"K": kn_pair[0],
"BLOCK_M": block_m,
"BLOCK_N": block_n,
"SWIZZLE_D_MODE": smem_config[1],
"BLOCK_N_PADDING": smem_config[2],
"NUM_STAGES": num_stages,
"NUM_TMA_MULTICAST": tma_multicast_config[0],
"IS_TMA_MULTICAST_ON_A": tma_multicast_config[1],
"IS_GROUPED_CONTIGUOUS": is_grouped_contiguous,
"IS_GROUPED_MASKED": is_grouped_masked,
"MOE_NUM_EXPERTS": moe_num_experts,
}
f.write(json.dumps(cfg) + "\n")
counter += 1
return counter
def main(args):
with open(os.path.join(args.model, "config.json"), "r") as f:
model_cfg = json.load(f)
logger.debug(
f"TP Size: {args.tensor_parallel_size}, "
f"EP Size: {args.expert_parallel_size}, "
f"has shared experts: {args.has_shared_experts}"
)
logger.info(f"Configurations generated and saved to {args.output}")
(
gemm_kn_pairs,
grouped_gemm_contiguous_kn_pairs,
grouped_gemm_masked_kn_pairs,
) = generate_kn_pairs(args, model_cfg)
logger.debug(f"GEMM KN pairs: {gemm_kn_pairs}")
logger.debug(f"Grouped GEMM Contiguous KN pairs: {grouped_gemm_contiguous_kn_pairs}")
logger.debug(f"Grouped GEMM Masked KN pairs: {grouped_gemm_masked_kn_pairs}")
if len(gemm_kn_pairs) > 0:
num_gemm = generate_json(
gemm_kn_pairs,
model_cfg["moe_num_experts"],
args.output,
)
logger.info(f"Generated {num_gemm} gemm configuration.")
if len(grouped_gemm_contiguous_kn_pairs) > 0:
num_grouped_contiguous = generate_json(
grouped_gemm_contiguous_kn_pairs,
model_cfg["moe_num_experts"],
args.output,
is_grouped_contiguous=True,
)
logger.info(f"Generated {num_grouped_contiguous} grouped_gemm_contiguous configuration.")
if len(grouped_gemm_masked_kn_pairs) > 0:
num_grouped_masked = generate_json(
grouped_gemm_masked_kn_pairs,
model_cfg["moe_num_experts"],
args.output,
is_grouped_masked=True,
)
logger.info(f"Generated {num_grouped_masked} grouped_gemm_masked configuration.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
)
parser.add_argument(
"--tensor-parallel-size",
"--tp",
type=int,
default=1,
)
parser.add_argument(
"--expert-parallel-size",
"--ep",
type=int,
default=1,
)
parser.add_argument(
"--has-shared-experts",
type=str,
default="False",
)
parser.add_argument(
"--output",
type=str,
default="./deep_gemm_pre_compile_config.jsonl",
)
args = parser.parse_args()
main(args)