Files
FastDeploy/fastdeploy/cache_manager/cache_transfer_manager.py
李泳桦 6265f4385f [feat] support prefix cache clearing when /clear_load_weight is called (#4008)
* [feat] support clearing prefix cache (cherry-picked from release/2.1)

* [fix] fix ipc suffix, use port instead

* [fix] fix prefix caching not enabled

* [fix] fix key/value_cache_scales indent

* [fix] fix ep group all-reduce

* [fix] fix clear/update lock not working when workers > 1

* [chore] add preemption triggered info log

* [fix] fix code style

* [fix] fix max_num_seqs config

* [fix] do not force enable_prefix_caching=False in dynamic loading

* [fix] fix ci

* Revert "[fix] fix ci"

This reverts commit 0bc6d55cc8.

* [fix] initialize available_gpu_block_num with max_gpu_block_num

* [fix] fix config splitwise_role

* [fix] fix clearing caches synchronization and add more logs

* [chore] print cache_ready_signal in log

* [fix] fix scheduler_config.splitwise_role

* [fix] fix cache_messager cache_ready_signal create=True

* [fix] stop cache messager from launching in mixed deployment
2025-09-28 19:42:53 +08:00

548 lines
22 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import concurrent.futures
import gc
import json
import queue
import threading
import time
import traceback
import numpy as np
import paddle
from fastdeploy import envs
from fastdeploy.cache_manager.cache_data import CacheStatus
from fastdeploy.config import SpeculativeConfig
from fastdeploy.inter_communicator import EngineCacheQueue, IPCSignal, KVCacheStatus
from fastdeploy.model_executor.ops.gpu import (
cuda_host_alloc,
cuda_host_free,
set_data_ipc,
share_external_data,
swap_cache_all_layers,
unset_data_ipc,
)
from fastdeploy.utils import get_logger
def parse_args():
"""
从命令行解析参数
"""
parser = argparse.ArgumentParser("Cache transfer manager")
parser.add_argument(
"--splitwise_role",
type=str,
default="mixed",
help="splitwise role, can be decode, prefill or mixed",
)
parser.add_argument("--rank", type=int, default=0, help="current rank")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--num_layers", type=int, default=1, help="model num layers")
parser.add_argument("--head_dim", type=int, default=1, help="model head dim")
parser.add_argument("--kv_num_head", type=int, default=1, help="model kv num head")
parser.add_argument("--rdma_port", type=str, default="", help="rmda port")
parser.add_argument("--mp_num", type=int, default=1, help="number of model parallel")
parser.add_argument(
"--protocol",
type=str,
default="ipc",
help="cache transfer protocol, only support ipc now",
)
parser.add_argument("--enable_splitwise", type=int, default=0, help="enable splitwise ")
parser.add_argument("--cache_queue_port", type=int, default=9923, help="cache queue port")
parser.add_argument("--pod_ip", type=str, default="0.0.0.0", help="pod ip")
parser.add_argument(
"--engine_worker_queue_port",
type=int,
default=9923,
help="engine worker queue port",
)
parser.add_argument("--engine_pid", type=str, default=None, help="engine pid")
parser.add_argument("--num_gpu_blocks", type=int, default=1, help="gpu cache block number")
parser.add_argument("--num_cpu_blocks", type=int, default=4, help="cpu cache block number")
parser.add_argument("--block_size", type=int, default=64, help="cache block size(tokens)")
parser.add_argument(
"--bytes_per_layer_per_block",
type=int,
default=1024,
help="per layer per block bytes",
)
parser.add_argument(
"--cache_dtype",
type=str,
default="bfloat16",
choices=["uint8", "bfloat16"],
help="cache dtype",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default="{}",
help="speculative config",
)
parser.add_argument("--local_data_parallel_id", type=int, default=0)
parser.add_argument("--create_cache_tensor", action="store_true")
args = parser.parse_args()
return args
class CacheTransferManager:
"""
管理CPU和GPU之间缓存的交换传输
"""
def __init__(self, args):
"""
初始化CacheTransferManager
"""
device = args.device_id
rank = args.rank
self.gpu_cache_kvs = {}
self.cpu_cache_kvs = {}
self.gpu_cache_k_tensors = []
self.gpu_cache_v_tensors = []
self.speculative_config = SpeculativeConfig(args.speculative_config)
self.num_extra_layers = self.speculative_config.num_extra_cache_layer
self.num_extra_layer_gpu_blocks = int(args.num_gpu_blocks * self.speculative_config.num_gpu_block_expand_ratio)
self.swap_to_cpu_thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=1)
self.swap_to_gpu_thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=1)
self.transfer_task_queue = queue.Queue() # 用来接收传输任务
self.tansfer_done_queue = queue.Queue() # 用来告知任务执行完毕
self.n_ranks = args.mp_num
self.rank = rank
self.device = device
self.engine_pid = args.engine_pid
address = (args.pod_ip, args.cache_queue_port)
self.cache_task_queue = EngineCacheQueue(
address=address,
is_server=False,
num_client=args.mp_num,
client_id=rank,
local_data_parallel_id=args.local_data_parallel_id,
)
cache_ready_signal_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
self.cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=self.engine_pid,
create=False,
)
swap_space_ready_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
self.swap_space_ready_signal = IPCSignal(
name="swap_space_ready_signal",
array=swap_space_ready_data,
dtype=np.int32,
suffix=self.engine_pid,
create=False,
)
self.num_cpu_blocks = args.num_cpu_blocks
self._init_cpu_cache(args)
self._init_gpu_cache(args)
cache_task_broadcast_data = np.zeros(shape=[1], dtype=np.int32)
self.cache_task_broadcast_signal = IPCSignal(
name="cache_task_broadcast_signal",
array=cache_task_broadcast_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
threading.Thread(target=self.clear_or_update_caches, args=[args], daemon=True).start()
def _init_gpu_cache(self, args):
if not args.create_cache_tensor:
logger.info(f"[rank {self.rank}/{self.n_ranks}] Waiting for runners to create kv cache.")
while self.cache_ready_signal.value[self.rank] != 1:
time.sleep(0.1)
logger.info(f"[rank {self.rank}/{self.n_ranks}] OK! Stop waiting.")
logger.info(f"[rank {self.rank}/{self.n_ranks}] Initializing kv cache for all layers.")
paddle.set_device(f"gpu:{self.device}")
for i in range(args.num_layers + self.num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_layers else self.num_extra_layer_gpu_blocks
cache_shape = [num_gpu_blocks, args.kv_num_head, args.block_size, args.head_dim]
key_name = f"key_caches_{i}_rank{self.rank}.device{self.device}"
val_name = f"value_caches_{i}_rank{self.rank}.device{self.device}"
if args.create_cache_tensor:
logger.info(f"[rank {self.rank}/{self.n_ranks}] ..creating kv cache for layer {i}: {cache_shape}")
key_cache = paddle.full(shape=cache_shape, fill_value=0, dtype=args.cache_dtype)
val_cache = paddle.full(shape=cache_shape, fill_value=0, dtype=args.cache_dtype)
set_data_ipc(key_cache, key_name)
set_data_ipc(val_cache, val_name)
else:
logger.info(f"[rank {self.rank}/{self.n_ranks}] ..attaching kv cache for layer {i}: {cache_shape}")
key_cache = paddle.empty(shape=[], dtype=args.cache_dtype)
val_cache = paddle.empty(shape=[], dtype=args.cache_dtype)
key_cache = share_external_data(key_cache, key_name, cache_shape)
val_cache = share_external_data(val_cache, val_name, cache_shape)
self.gpu_cache_kvs[key_name] = key_cache
self.gpu_cache_kvs[val_name] = val_cache
self.gpu_cache_k_tensors.append(self.gpu_cache_kvs[key_name])
self.gpu_cache_v_tensors.append(self.gpu_cache_kvs[val_name])
if args.create_cache_tensor:
logger.info("[rank {self.rank}/{self.n_ranks}] ✅ kv cache is ready!")
self.cache_ready_signal.value[self.rank] = 1
cache_kv_size_byte = sum([tmp.numel() * 1 for key, tmp in self.gpu_cache_kvs.items()])
logger.info(f"[rank {self.rank}/{self.n_ranks}] device :{self.device}")
logger.info(f"[rank {self.rank}/{self.n_ranks}] cache_kv_size_byte : {cache_kv_size_byte}")
logger.info(
f"[rank {self.rank}/{self.n_ranks}] done init cache (full) gmem alloc : {paddle.device.cuda.memory_allocated()}"
)
def _init_cpu_cache(self, args):
if args.num_cpu_blocks == 0:
logger.info(f"[rank {self.rank}/{self.n_ranks}] 💡 no swap space (cpu cache) is specified.")
self.swap_space_ready_signal.value[self.rank] = 1
return
logger.info(f"[rank {self.rank}/{self.n_ranks}] Initializing swap space (cpu cache) for all layers.")
paddle.set_device("cpu")
self.k_dst_ptrs = []
self.v_dst_ptrs = []
for i in range(args.num_layers + self.num_extra_layers):
key_name = f"key_caches_{i}_rank{self.rank}"
val_name = f"value_caches_{i}_rank{self.rank}"
need_to_allocate_bytes = args.num_cpu_blocks * args.bytes_per_layer_per_block
logger.info(
f"[rank {self.rank}/{self.n_ranks}] ..creating cpu cache for layer {i}: {2 * need_to_allocate_bytes / 1024 ** 3:.2f}GB"
)
self.cpu_cache_kvs[key_name] = cuda_host_alloc(need_to_allocate_bytes)
self.k_dst_ptrs.append(self.cpu_cache_kvs[key_name])
self.cpu_cache_kvs[val_name] = cuda_host_alloc(need_to_allocate_bytes)
self.v_dst_ptrs.append(self.cpu_cache_kvs[val_name])
logger.info(f"[rank {self.rank}/{self.n_ranks}] ✅ swap space (cpu cache) is ready!")
self.swap_space_ready_signal.value[self.rank] = 1
def _do_swap_to_cpu_task(
self,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
):
"""
swap cache GPU->CPU
"""
self.cache_task_queue.swap_to_cpu_barrier1.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_cpu_barrier1.reset()
result = self._transfer_data(
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
self.cache_task_queue.swap_to_cpu_barrier2.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_cpu_barrier2.reset()
self.cache_task_queue.put_transfer_done_signal(result)
logger.debug(f"_do_swap_to_cpu_task: put_transfer_done_signal {result}")
logger.info(f"_do_swap_to_cpu_task: put_transfer_done_signal for transfer_task_id {transfer_task_id}")
def _do_swap_to_gpu_task(
self,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
):
"""
swap cache CPU->GPU
"""
self.cache_task_queue.swap_to_gpu_barrier1.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_gpu_barrier1.reset()
result = self._transfer_data(
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
self.cache_task_queue.swap_to_gpu_barrier2.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_gpu_barrier2.reset()
self.cache_task_queue.put_transfer_done_signal(result)
logger.debug(f"_do_swap_to_gpu_task: put_transfer_done_signal {result}")
logger.info(f"_do_swap_to_gpu_task: put_transfer_done_signal for transfer_task_id {transfer_task_id}")
def do_data_transfer(self):
"""
do data transfer task
"""
while True:
try:
if self.rank == 0:
if not self.cache_task_queue.empty():
self.cache_task_broadcast_signal.value[0] = 1
if self.n_ranks > 1:
self.cache_task_queue.barrier1.wait()
if self.rank == 0:
self.cache_task_queue.barrier1.reset()
if self.cache_task_broadcast_signal.value[0] == 1:
data, read_finish = self.cache_task_queue.get_transfer_task()
logger.debug(f"transfer data: get_transfer_task {data}")
if read_finish:
self.cache_task_broadcast_signal.value[0] = 0
(
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
) = data
if event_type.value == CacheStatus.SWAP2CPU.value:
self.swap_to_cpu_thread_pool.submit(
self._do_swap_to_cpu_task,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
else:
self.swap_to_gpu_thread_pool.submit(
self._do_swap_to_gpu_task,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
else:
if self.n_ranks > 1:
self.cache_task_queue.barrier2.wait()
if self.rank == 0:
self.cache_task_queue.barrier2.reset()
continue
if self.n_ranks > 1:
self.cache_task_queue.barrier3.wait()
if self.rank == 0:
self.cache_task_queue.barrier3.reset()
except Exception as e:
logger.info(f"do_data_transfer: error: {e}, {str(traceback.format_exc())}")
def _transfer_data(
self,
swap_node_ids,
task_gpu_block_id,
task_cpu_block_id,
event_type,
transfer_task_id,
):
"""
transfer data
task_gpu_block_id format: [[block_id0, [fold_block_id0, fold_block_id1]],
[block_id1, [fold_block_id0, fold_block_id1]], ...]
"""
logger.debug(
f"transfer data: transfer_task_id {transfer_task_id}: swap_node_ids {swap_node_ids}"
+ f"task_gpu_block_id {task_gpu_block_id} task_cpu_block_id {task_cpu_block_id} event_type {event_type}"
)
start_time = time.time()
try:
# transform block id
assert len(task_gpu_block_id) == len(task_cpu_block_id)
gpu_block_ids = task_gpu_block_id
cpu_block_ids = task_cpu_block_id
if event_type.value == CacheStatus.SWAP2CPU.value:
swap_cache_all_layers(
self.gpu_cache_k_tensors,
self.k_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
0,
)
swap_cache_all_layers(
self.gpu_cache_v_tensors,
self.v_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
0,
)
elif event_type.value == CacheStatus.SWAP2GPU.value:
swap_cache_all_layers(
self.gpu_cache_k_tensors,
self.k_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
1,
)
swap_cache_all_layers(
self.gpu_cache_v_tensors,
self.v_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
1,
)
else:
logger.warning(
f"transfer data: Get unexpected event type {event_type}, only SWAP2CPU and SWAP2GPU supported"
)
except Exception as e:
logger.error(f"transfer data: error: {e}")
raise e
end_time = time.time()
elasped_time = end_time - start_time
logger.info(
f"transfer data: transfer_task_id {transfer_task_id} event_type {event_type}: "
+ f"transfer {len(gpu_block_ids)} blocks done elapsed_time {elasped_time:.4f}"
)
return (
swap_node_ids,
task_gpu_block_id,
task_cpu_block_id,
event_type,
transfer_task_id,
)
def clear_or_update_caches(self, args):
logger.info("Start a thread to clear/restore kv cache when model weights are cleared/updated.")
logger.info(f"FD_ENABLE_SWAP_SPACE_CLEARING={envs.FD_ENABLE_SWAP_SPACE_CLEARING}")
kv_cache_status = np.zeros([1], dtype=np.int32)
kv_cache_status_signal = IPCSignal(
name="kv_cache_status",
array=kv_cache_status,
dtype=np.int32,
suffix=self.engine_pid,
create=False,
)
while True:
if kv_cache_status_signal.value[0] == KVCacheStatus.CLEARING:
try:
logger.info(
f"[rank {self.rank}/{self.n_ranks}] Start clearing caches {self.cache_ready_signal.value}"
)
# clear cpu caches
if envs.FD_ENABLE_SWAP_SPACE_CLEARING:
paddle.set_device("cpu")
for ptrs in self.k_dst_ptrs + self.v_dst_ptrs:
cuda_host_free(ptrs)
self.cpu_cache_kvs.clear()
self.k_dst_ptrs.clear()
self.v_dst_ptrs.clear()
gc.collect()
# reset swap_space_ready_signal
self.swap_space_ready_signal.value[self.rank] = 0
while np.sum(self.swap_space_ready_signal.value) != 0:
time.sleep(0.1)
# clear gpu caches
paddle.set_device(f"gpu:{self.device}")
for name, tensor in self.gpu_cache_kvs.items():
unset_data_ipc(tensor, name, True, False)
self.gpu_cache_kvs.clear()
self.gpu_cache_k_tensors.clear()
self.gpu_cache_v_tensors.clear()
# reset cache_ready_signal
self.cache_ready_signal.value[self.rank] = 0
logger.info(
f"[rank {self.rank}/{self.n_ranks}] Finish clearing caches {self.cache_ready_signal.value}"
)
# wait for all ranks caches to be cleared
if np.sum(self.cache_ready_signal.value) != 0:
time.sleep(0.1)
# reset kv_cache_status_signal
kv_cache_status_signal.value[0] = KVCacheStatus.CLEARED
logger.info("All ranks finish clearing caches")
except Exception as e:
logger.error(f"[rank {self.rank}/{self.n_ranks}] Failed to clear caches: {e}")
elif kv_cache_status_signal.value[0] == KVCacheStatus.UPDATING:
try:
logger.info(
f"[rank {self.rank}/{self.n_ranks}] Start restoring caches {self.cache_ready_signal.value}"
)
# restore cpu cache
if envs.FD_ENABLE_SWAP_SPACE_CLEARING:
self._init_cpu_cache(args)
while np.sum(self.swap_space_ready_signal.value) != args.mp_num:
time.sleep(0.1)
# restore gpu cache and set cache_ready_signal
self._init_gpu_cache(args)
logger.info(
f"[rank {self.rank}/{self.n_ranks}] Finish restoring caches {self.cache_ready_signal.value}"
)
# wait for all ranks caches to be ready
while np.sum(self.cache_ready_signal.value) != args.mp_num:
time.sleep(0.1)
# set kv_cache_status_signal
logger.info("All ranks finish restoring caches")
kv_cache_status_signal.value[0] = KVCacheStatus.NORMAL
except Exception as e:
logger.error(f"[rank {self.rank}/{self.n_ranks}] Failed to restore caches: {e}")
time.sleep(0.1)
def main():
"""
启动cache manager
"""
cache_manager = CacheTransferManager(args)
cache_manager.do_data_transfer()
if __name__ == "__main__":
args = parse_args()
rank_id = args.rank + args.local_data_parallel_id * args.mp_num
logger = get_logger("cache_transfer_manager", f"cache_transfer_manager_rank{rank_id}.log")
paddle.set_device(f"gpu:{args.device_id}")
main()