Files
FastDeploy/fastdeploy/vision/classification/ppshitu/ppshituv2_rec_preprocessor.h
DefTruth 77cb9db6da [Model] Support PP-ShiTuV2 models for PaddleClas (#1900)
* [cmake] add faiss.cmake -> pp-shituv2

* [PP-ShiTuV2] Support PP-ShituV2-Det model

* [PP-ShiTuV2] Support PP-ShiTuV2-Det model

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [Bug Fix] fix ppshitu_pybind error

* [benchmark] Add ppshituv2-det c++ benchmark

* [examples] Add PP-ShiTuV2 det & rec examples

* [vision] Update vision classification result

* [Bug Fix] fix trt shapes setting errors
2023-05-08 14:04:09 +08:00

73 lines
2.7 KiB
C++

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/manager.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief Preprocessor object for PP-ShiTuV2 Recognizer model.
*/
class FASTDEPLOY_DECL PPShiTuV2RecognizerPreprocessor : public ProcessorManager {
public:
/** \brief Create a preprocessor instance for PP-ShiTuV2 Recognizer model
*
* \param[in] config_file Path of configuration file for deployment, e.g PPLCNet/infer_cfg.yml
*/
explicit PPShiTuV2RecognizerPreprocessor(const std::string& config_file);
/** \brief Implement the virtual function of ProcessorManager, Apply() is the
* body of Run(). Apply() contains the main logic of preprocessing, Run() is
* called by users to execute preprocessing
*
* \param[in] image_batch The input image batch
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
virtual bool Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs);
/// This function will disable normalize in preprocessing step.
void DisableNormalize();
/// This function will disable hwc2chw in preprocessing step.
void DisablePermute();
/** \brief When the initial operator is Resize, and input image size is large,
* maybe it's better to run resize on CPU, because the HostToDevice memcpy
* is time consuming. Set this true to run the initial resize on CPU.
*
* \param[in] v ture or false
*/
void InitialResizeOnCpu(bool v) { initial_resize_on_cpu_ = v; }
private:
bool BuildPreprocessPipelineFromConfig();
bool initialized_ = false;
std::vector<std::shared_ptr<Processor>> processors_;
// for recording the switch of hwc2chw
bool disable_permute_ = false;
// for recording the switch of normalize
bool disable_normalize_ = false;
// read config file
std::string config_file_;
bool initial_resize_on_cpu_ = false;
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy