mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
73 lines
2.7 KiB
C++
73 lines
2.7 KiB
C++
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#pragma once
|
|
#include "fastdeploy/vision/common/processors/manager.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
|
|
/*! @brief Preprocessor object for PP-ShiTuV2 Recognizer model.
|
|
*/
|
|
class FASTDEPLOY_DECL PPShiTuV2RecognizerPreprocessor : public ProcessorManager {
|
|
public:
|
|
/** \brief Create a preprocessor instance for PP-ShiTuV2 Recognizer model
|
|
*
|
|
* \param[in] config_file Path of configuration file for deployment, e.g PPLCNet/infer_cfg.yml
|
|
*/
|
|
explicit PPShiTuV2RecognizerPreprocessor(const std::string& config_file);
|
|
|
|
/** \brief Implement the virtual function of ProcessorManager, Apply() is the
|
|
* body of Run(). Apply() contains the main logic of preprocessing, Run() is
|
|
* called by users to execute preprocessing
|
|
*
|
|
* \param[in] image_batch The input image batch
|
|
* \param[in] outputs The output tensors which will feed in runtime
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
virtual bool Apply(FDMatBatch* image_batch,
|
|
std::vector<FDTensor>* outputs);
|
|
|
|
/// This function will disable normalize in preprocessing step.
|
|
void DisableNormalize();
|
|
/// This function will disable hwc2chw in preprocessing step.
|
|
void DisablePermute();
|
|
|
|
/** \brief When the initial operator is Resize, and input image size is large,
|
|
* maybe it's better to run resize on CPU, because the HostToDevice memcpy
|
|
* is time consuming. Set this true to run the initial resize on CPU.
|
|
*
|
|
* \param[in] v ture or false
|
|
*/
|
|
void InitialResizeOnCpu(bool v) { initial_resize_on_cpu_ = v; }
|
|
|
|
private:
|
|
bool BuildPreprocessPipelineFromConfig();
|
|
bool initialized_ = false;
|
|
std::vector<std::shared_ptr<Processor>> processors_;
|
|
// for recording the switch of hwc2chw
|
|
bool disable_permute_ = false;
|
|
// for recording the switch of normalize
|
|
bool disable_normalize_ = false;
|
|
// read config file
|
|
std::string config_file_;
|
|
bool initial_resize_on_cpu_ = false;
|
|
};
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|