Files
FastDeploy/fastdeploy/vision/classification/ppshitu/ppshitu_pybind.cc
DefTruth 77cb9db6da [Model] Support PP-ShiTuV2 models for PaddleClas (#1900)
* [cmake] add faiss.cmake -> pp-shituv2

* [PP-ShiTuV2] Support PP-ShituV2-Det model

* [PP-ShiTuV2] Support PP-ShiTuV2-Det model

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [Bug Fix] fix ppshitu_pybind error

* [benchmark] Add ppshituv2-det c++ benchmark

* [examples] Add PP-ShiTuV2 det & rec examples

* [vision] Update vision classification result

* [Bug Fix] fix trt shapes setting errors
2023-05-08 14:04:09 +08:00

102 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPPShiTuV2(pybind11::module& m) {
pybind11::class_<vision::classification::PPShiTuV2RecognizerPreprocessor,
vision::ProcessorManager>(m,
"PPShiTuV2RecognizerPreprocessor")
.def(pybind11::init<std::string>())
.def("disable_normalize",
[](vision::classification::PPShiTuV2RecognizerPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute",
[](vision::classification::PPShiTuV2RecognizerPreprocessor& self) {
self.DisablePermute();
})
.def("initial_resize_on_cpu",
[](vision::classification::PPShiTuV2RecognizerPreprocessor& self,
bool v) { self.InitialResizeOnCpu(v); });
pybind11::class_<vision::classification::PPShiTuV2RecognizerPostprocessor>(
m, "PPShiTuV2RecognizerPostprocessor")
.def(pybind11::init<>())
.def("run",
[](vision::classification::PPShiTuV2RecognizerPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PPShiTuV2RecognizerPostprocessor.");
}
return results;
})
.def("run",
[](vision::classification::PPShiTuV2RecognizerPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PPShiTuV2RecognizerPostprocessor.");
}
return results;
})
.def_property("feature_norm",
&vision::classification::PPShiTuV2RecognizerPostprocessor::
GetFeatureNorm,
&vision::classification::PPShiTuV2RecognizerPostprocessor::
SetFeatureNorm);
pybind11::class_<vision::classification::PPShiTuV2Recognizer,
FastDeployModel>(m, "PPShiTuV2Recognizer")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("clone",
[](vision::classification::PPShiTuV2Recognizer& self) {
return self.Clone();
})
.def("predict",
[](vision::classification::PPShiTuV2Recognizer& self,
pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data);
vision::ClassifyResult result;
self.Predict(im, &result);
return result;
})
.def("batch_predict",
[](vision::classification::PPShiTuV2Recognizer& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly(
"preprocessor",
&vision::classification::PPShiTuV2Recognizer::GetPreprocessor)
.def_property_readonly(
"postprocessor",
&vision::classification::PPShiTuV2Recognizer::GetPostprocessor);
}
} // namespace fastdeploy